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ABSTRACT: 

 

Numerous applications of small footprint airborne lidar (light detection and ranging) have provided highly accurate results for 

estimating forest height. However, the associated acquisition cost remains high, which limits its use for wall-to-wall large area 

mapping. In this study, we developed a novel framework by integrating GEOBIA (GEOgraphic Object-Based Image Analysis), lidar 

transects and Quickbird imagery to estimate large area canopy height. Model results (from eight different lidar transect combinations 

in two different directions, N-S and W-S) were compared with the corresponding canopy height from the full lidar scene. Results 

show that the highest correlation (R = 0.85) was achieved using a lidar transect cover of 7.6% of the full scene (i.e., two transects in 

N-S direction), while the lowest correlation (R = 0.75) was obtained from a lidar transect cover of 3.8%.   
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1. INTRODUCTION 

Remote sensing techniques have been widely used to estimate 

large-area forest vertical structure. Among these techniques, 

lidar (light detection and ranging) has proven the ability to 

accurately characterize forest canopy height (Means et al., 

1999). However, an important issue associated with lidar is that 

small-footprint airborne lidar acquisition remains expensive, 

which limits wall-to-wall lidar mapping over large forest areas. 

Compared to lidar data of similar extent and resolution, optical 

imagery (even high-resolution data) are less costly to acquire. 

Therefore, an integration of lidar transects and optical imagery 

provides a potential solution to estimate forest canopy height 

for large areas. To date, there have been only a few studies on 

this subject (Hudak et al., 2002; Wulder and Seemann, 2003; 

Hilker et al., 2008). Though promising results have been 

reported, two critical issues have rarely been discussed: (i) the 

selection of appropriate lidar transect features (e.g., location, 

direction and cover); and (ii) the investigation of the 

relationship between optical and lidar variables. Specifically, (i) 

lidar transects were arbitrarily selected in previous studies, 

without considering forest height variability of the entire area, 

which could possibly reduce model robustness; and (ii) the 

commonly used multiple regression approach may fail to 

capture the complex relationship between the two data types for 

forest studies, which requires the use of techniques with strong 

generalization capacity, such as machine learning methods. 

 

GEOgraphic Object-Based Image Analysis (GEOBIA), a sub-

discipline of Geographic Information Science (GIScience), has 

been through a dramatic development in recent years driven by 

the advent of high-spatial resolution imagery and the 

availability of powerful data processing software (Hay and 

Castilla, 2008; Blaschke, 2010). In remote sensing forest 

studies, GEOBIA has proven successful for decreasing internal 

spectral variance within each geographic object and therefore 

dramatically increase model performance in several aspects, 

such as characterizing tree biophysical parameters and 

classifying forest cover types (Addink et al., 2007; Yu et al., 

2008). 

 

Based on these ideas, the goal of this study was to develop a 

framework to accurately estimate large-area forest canopy 

height by integrating small-area airborne lidar transects and 

Quickbird imagery. To achieve this goal, (i) a GEOBIA 

approach was used to characterize canopy height at the small 

tree cluster level, as the (upper scale) stand-level estimates will 

be available directly by aggregating the tree-cluster-level 

results; (ii) the best lidar transect locations were determined by 

using a lidar transect selection algorithm, which was built upon 

our prior research (Chen and Hay, 2010). However, emphasis in 

this study was placed on evaluating the algorithm performance 

in mixed forests with a larger extent; and (iii) we further 

investigated the potential of using two machine learning 

techniques – a minimal-redundancy-maximal-relevance 

(mRMR) method and support vector regression (SVR), to 

select suitable model variables and further generalize forest 

vertical information from lidar transects to the large study area. 

 
2. DATA COLLECTION 

2.1 Study area 

Our study site is located at the Training and Research Forest of 

Lake Duparquet (TRFLD), Quebec, Canada. The study area is 

16,330 ha (14.2 × 11.5 km) and is characterized by south-east 

boreal forests with an abundance of mixed stands. This study 

site is dominated by balsam fir (Abies balsamea L. [Mill.]), 

along with small proportions of white spruce (Picea glauca 

[Moench] Voss), black spruce (Picea mariana [Mill] B.S.P.), 

white birch (Betula paprifera [Marsh.]), trembling aspen 

(Populus tremuloides [Michx]), and jack pine (Pinus banksiana 

Lamb.). The remainder of the site is composed of clearcuts, 

roads, rivers and lakes. 
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2.2 Field data 

Field data were collected during the summer of 2003. A number 

of forest stands were visited and canopy height was defined 

from 37 field plots. Most of these plots were measured using a 

fixed size of 20 × 20 m; however, a plot size of 10 × 10 m was 

also used in several dense and uniform stands, where the two 

types of plot sizes would produce similar results. 

 

2.3 Lidar data 

Lidar data were acquired from August 14 to 16, 2003, by a 

discrete-return Optech ALTM2050 system. This mission was 

carried out at a flying attitude of 1000 m, with a pulse repetition 

frequency of 50 kHz, a beam divergence of 0.2 mrad, and a 

maximum scale angle of 15° (i.e., swath width of 540 m). First 

and last returns were recorded, with average densities of 3.0 and 

0.2 hit(s)/m2, respectively. These were used to generate digital 

surface and elevation models. A forest canopy height model 

(CHM) was derived from them at a 1.0 m resolution. 

 

2.4 Quickbird (QB) data 

QB imagery of the study site were acquired on June 13, 2003. 

Four multispectral bands [i.e., blue, green, red and near infrared 

(NIR)] and one panchromatic band were used in this study. To 

increase the spatial resolution while maintaining the 

multispectral information, a principal components spectral 

sharpening technique (Welch and Ahlers, 1987) was used to 

fuse the QB multispectral bands with the panchromatic band. 

The pan-sharpened QB image was then resampled to 1.0 m, 

consistent with the lidar CHM. The QB image was then 

geometrically co-registered to the lidar CHM using 60 tie 

points, yielding a RMSE of 0.9 m. 

 

3. METHODOLOGY 

3.1 Image segmentation and tree type classification 

To obtain meaningful forests image-objects, Definiens 

Developer 7.0 (Definiens Imaging GmbH, Munich, Germany) 

was applied to segment the pan-sharpened multispectral 

Quickbird imagery using the multiresolution segmentation 

algorithm. Two parameters of shape and compactness control 

the characteristics of similarity and heterogeneity for each 

image-object. In this study, we used the software default value 

of 0.1 for shape; while the compactness parameter was set as 

0.8 to obtain smooth boundaries for forest objects. All four 

spectral bands were assigned the same weight during the 

segmentation. The scale parameter was adjusted to derive 

image-objects at the small tree cluster level, with the mean 

object size (MOS) of 0.04 ha. All image-objects were further 

classified into three categories: conifer, deciduous and non-

forest objects. This step was accomplished by applying the 

hierarchical classification algorithm in Definiens Developer 7.0 

using the QB four spectral bands. 

 

3.2 Canopy-object pseudo-height classification 

The purpose of this step is to simulate the canopy height 

variability of the entire study area by using QB imagery only, 

from which the lidar transect features can be appropriately 

determined in the next step (see Section 3.3). Three types of 

QB-derived object-based variables have proven the potential of 

estimating lidar-measured canopy height in our previous study 

(Chen et al., 2009): (i) mean spectral bands; (ii) image-texture 

for spectral bands, which includes internal-object texture and 

geographic object-based texture (GEOTEX); and (iii) shadow 

fraction. Then, 14 height classes were generated using an 

unsupervised classification algorithm of ISODATA in ENVI 

(ITT Visual Information Solutions, Colorado, USA). 

 

3.3 Lidar transect selection 

In this study, lidar transect selection requires the decision of 

three important transect features: (i) cover, (ii) direction and 

(iii) location. To determine appropriate features, the canopy 

pseudo-height classification result (derived from Section 3.2) 

was used as a proxy for forest height class variability. Since a 

small area lidar acquisition represents a relatively smaller cost, 

only four types of small-area lidar cover were evaluated in this 

study using 1-4 transect samples. Two directions of N-S (north-

south) and W-E (west-east) were further assessed. This resulted 

in lidar transect cover (as a percentage of the entire scene area) 

of 3.8%, 7.6%, 11.4% and 15.2% in N-S direction, and 4.7%, 

9.4%, 14.1% and 18.8% in W-E direction. The best transect 

location(s) for each combination of cover and direction was 

determined by using the rules developed by Chen and Hay 

(2010). 

 

3.4 mRMR selecting variables  

Three types of QB-derived variables (the same variables as 

those used in Section 3.2) were used to link QB data with lidar-

measured canopy height within the transect-covered areas. To 

determine an appropriate variable subset from all input 

variables, a machine learning technique named the minimal-

redundancy-maximal-relevance (mRMR) approach (Peng et al., 

2005) was applied to select the best subset of six variables from 

a total of 13 variables. These were used separately to model the 

canopy height for conifer and deciduous tree classes.  

 

3.5 Support vector regression (SVR) modelling 

In this study, SVR was applied to develop models estimating 

lidar-measured canopy height for both conifers and deciduous 

trees. An SVM open source software of LIBSVM was used to 

perform the modelling (Chang and Lin, 2001), with the best 

parameter combination found at C (penalty parameter) = 8.0, ε 

(precision parameter) = 0.5 and γ (kernel parameter) = 1.0. 

 

3.6 Estimation of forest height 

Nonlinear models, which have been widely used to estimate 

forest biophysical parameters using lidar data in previous 

studies (Næsset, 1997; Means et al., 1999; Lim et al., 2003), 

were employed to build a relationship between the previously 

estimated canopy height and the field measurements. To 

compare the estimation results derived from our framework with 

those using the full lidar scene, (i) a nonlinear model was 

developed to build the relationship between field measurements 

and actual data; and (ii) the difference between these two types 

of estimation results (using our framework versus actual lidar 

data) was evaluated using correlation (R) and RMSE. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Spatial distribution of the selected transects 

By applying the lidar transect selection algorithm in this area, 

Figure 1 shows the results illustrating four transect 
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combinations and canopy height histograms using lidar cover of 

(1) 3.8%, (2) 7.6%, (3) 11.4%, and (4) 15.2% in N-S direction. 

It should be noted that these transect locations were considered 

as the best for each type of lidar cover in this study, based on 

our lidar transect selection algorithm (Section 3.3). To further 

ascertain whether these algorithm selected transects can well 

model the full scene canopy height variability, their canopy 

height histograms [Figures 1(1b) – (4b)] were compared with 

the canopy height histogram derived from the entire lidar 

dataset [Figure 1(5b)]. Clearly, the comparison shows that all 

histograms are highly correlated and have a similar trend. This 

confirms that the transect locations for different types of lidar 

cover were well selected. Since lidar transects selected in the 

W-E direction had a similar condition, they are not presented in 

this paper.  

 

 

 
Figure 1.  (1a) – (5a) shows four (N-S direction) lidar transect 

combinations - and associated coverage - (1a) 3.8%, (2a) 7.6%, 

(3a) 11.4%, (4a) 15.2% and (5a) 100.0% - derived from the 

transect selection algorithm (section 3.3). For illustrative 

purposes, the QB image was used as the base layer (B/W) with 

lidar transects overlaid (colour). (1b) – (5b) illustrate the 

canopy height histograms derived from the corresponding lidar 

transect data in (1a) – (5a). 

 

4.2 Model performance 

To evaluate the transect model performance with that using all 

lidar data, Figure 2 shows the scatterplots of estimated canopy 

height (using lidar transects and Quickbird data) versus the 

canopy height (using full-cover lidar data). Figure 2 shows that 

small lidar transect cover cannot produce high model 

performance, as the training samples may not be large enough. 

For example, Figures 2(1) used only one transect representing a 

lidar cover of 3.8% in N-S direction, where relatively low 

correlations (R = 0.75) and high errors (RMSE = 4.16 m) were 

located. With the increase of lidar transect cover, the model 

performance for estimating forest canopy height increased as 

well. However, the correlation changed in a relatively small 

range (i.e., between 0.81 and 0.85). This could be explained in 

two ways: (i) the amount of lidar transect data (i.e., training 

samples) were large enough to develop relatively robust models; 

and (ii) the machine learning SVR approach had a strong 

 
generalization ability, which facilitated the use of relatively 

small lidar transect cover to estimate large-area canopy height. 

The best performance (i.e., highest correlation and lowest error) 

of our framework to estimate canopy height (R = 0.85; RMSE = 

3.37 m) is shown in Figure 2(2), where two lidar transects were 

selected that represent a lidar cover of 7.6% in N-S direction. 

Additionally, Figure 2 also reveals that our framework tended to 

overestimate the (lidar-modelled) forest canopy height, for tree 

canopies that were lower than 5 m or taller than 20 m, although 

most field-measured canopies were located between this height 

range and the average error (RMSE = 3.37 m) was lower than 

the ~ 5.0 m forest inventory height class interval used in this 

area. 

 

 

5. CONCLUSION 

In this study, we developed a novel framework by integrating 

GEOBIA, small-area lidar transects and Quickbird imagery to 

estimate large-area forest canopy height. By using optical 

Quickbird imagery and the lidar transect selection algorithm, we 

first determined the best lidar transect locations for eight 

different lidar samples in two transect directions. Although our 

study area was dominated by mixed forest stands, the algorithm 

selected transects well modeled similar canopy height 

variability as that using all lidar data. To further generalize the 

accurate canopy height information from lidar transects to the 

large study area, two machine learning approaches – minimal-

redundancy-maximal-relevance (mRMR) and support vector 

regression (SVR) were used. Based on a comparison between 

the canopy height estimation performance using our framework 

with that using the full-scene lidar data, the highest correlation 

and lowest error (R = 0.85; RMSE = 3.37 m) were derived 

using a lidar transect cover of 7.6% (i.e., two transects) in N-S 

direction. With the GEOBIA approach, all estimates in this 

study were made at the small tree cluster level of 0.04 ha, which 

is similar to a typical field plot size. However, the geo-objects 

derived from GEOBIA can better delineate tree clusters with 

similar internal characteristics, rather than using arbitrarily 

designed square/circular plots. Larger object sizes were not 

evaluated in this study, as the within-object variability decreases 

 
 

Figure 2. Scatterplots of estimated canopy height (using 

lidar transects and Quickbird data) versus lidar canopy 

height (using full-cover lidar data). (1) - (4) represent lidar 

transect cover in N-S direction: (1) 3.8%, (2) 7.6%, (3) 

11.4% and (4) 15.2%. 
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with the increase of object sizes, which would definitely result 

in the loss of forest variability within large geo-objects. 
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