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ABSTRACT: 

 

The objectives of this study were (a) to evaluate the suitability of SAR imagery for discriminating savanna physiognomies, (b) to 

combine SAR and optical imagery for achieving improved accuracy, and (c) to develop a hybrid approach based on pixels and 

objects to characterize gradients of vegetation density. We used imagery from the Phased Array L-band Synthetic Aperture Radar 

(PALSAR), as well as imagery from the Thematic Mapper (TM) sensor. The PALSAR image was acquired in September 5th 2007, in 

dual polarization (HH and HV) with an off-nadir viewing angle of 34.3o. The TM image was acquired in September 10th 2007. 

Preprocessing comprised standard georeferencing and corrections for terrain effects using orthorectified Landsat TM (Geocover) and 

SRTM as reference datasets. The SAR and TM images were respectively converted to normalized radar cross section σ
0 and 

reflectance using published calibration factors. Visual image interpretation was used as the reference pattern for evaluating 

segmentation and classification procedures. The area was manually partitioned into polygons representing different land cover 

classes. Image segmentation for the automatic extraction of vegetation patches was performed using the SegSAR algorithm. Results 

were then compared to the visually delineated polygons. Object’s classification accuracy was used to select land cover classes that 

represented transitional areas for further per-pixels analysis. Per-object classifications and per-pixels regression were carried out 

using CART. Results showed that several land cover objects could not be accurately segmented nor classified using SAR data alone. 

However, the same objects were accurately delineated in an automatic way using the optical image. Objects classification was more 

accurate when both SAR and optical data were input to CART. Per-pixel characterization of tree cover gradients within selected 

transition objects was developed to describe land cover patterns in the study area. 
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1. INTRODUCTION 

According to McIntosh (1967) sampling and analysis of 

continuous transitions in plant communities extend at least as 

far back as Ramensky (1930). In some cases, these ecological 

transitions between adjacent vegetation types appear as 

indeterminate boundaries at the scale levels normally used in 

remote sense based surveys. Representation and visualization of 

these complex features using Geographical Information Systems 

(GIS) has gained considerable attention in recent years 

(Burrough and Frank, 1996). 

 

Two conceptual views of the ‘real world’ have been widely 

used to represent and visualize the Earth’s surface using GIS. 

One of them considers the space as being composed by features 

with homogeneous internal properties and separated by sharp 

boundaries. This approach has been called the ‘exact entity’ 

conceptual model. In contrast, the other view assumes that the 

space is characterized by gradual variations of surface 

properties and that no sharp boundaries exist. This is called the 

‘continuous field’ conceptual model (Burrough and McDonnel, 

1998). Choosing one of the two approaches has important 

implications to information extraction and has been considered 

a fundamental aspect in geography (Mennis et al., 2000). 

 

Real world phenomena are somewhere in between this rigid 

dichotomy and the choice between models will certainly lead to 

incomplete characterizations. Most researchers guide their 

choice by the nature of the phenomenon under investigation, 

including properties of the target process, as well as the spatial 

and temporal scales in which the phenomenon manifests itself 

(Silván-Cárdenas et al., 2009). The exact entity conceptual 

model has predominated research on mapping and monitoring 

land cover. Recently, a framework has been proposed and 

increasingly used in mapping projects. This framework, known 

as GEOBIA – Geographic Object-Based Image Analysis (Hay 

and Castilla, 2008), is strongly tied to the exact entity model 

with a few contributions dealing with continuous transitions 

among landscape features. Recent studies have explored the 

mapping of land cover classes with indeterminate boundaries 

within GEOBIA. Lucieer et al. (2005) have developed a 

procedure based on texture segmentation to extract exact 

entities and quantify uncertainty. They suggest that the spatial 

distribution of uncertainty measures provides information about 

localization and extent of transition zones. In another study 

(Cheng et al., 2001), the authors propose the creation of three 

fuzzy object models to represent land cover classes with 

indeterminate boundaries based on both, spatial extent and 

thematic information. With these models, they developed a 

formalism to assign pixels to objects using either raster or 

vector data structures, as well as to define transition zones with 

pixels belonging to none of the defined land cover classes. 

 

Previous studies consider the representation of transition zones 

from an object-based perspective. However, phenomena 

occurring at a certain scale might exhibit some classes with 

indeterminate boundaries, while others have sharp boundaries.  

In this paper, we address the problem of mapping indeterminate 
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boundaries by combining pixel- and object-based approaches to 

model vegetation classes with indeterminate boundaries. 

Optical remote sensing has been a major information source for 

operationally mapping and monitoring land cover classes in 

Brazil (Carvalho and Scolforo, 2008; Câmara et al., 2006). 

Nevertheless, a number of studies have demonstrated that 

atmospheric conditions may significantly hamper information 

extraction from optical images in tropical regions (Asner, 2001; 

Sano, 2007). For this reason, the use of SAR imagery is 

considered a promising alternative to complement the 

monitoring systems currently based on optical data 

(Shimabukuru et al., 2007). It is expected a crescent application 

of SAR images for large-scale vegetation studies due to 

relatively lower data costs and to the recent increase in data 

availability after various new systems were launched, e.g., 

ALOS PALSAR, TerraSAR-X, Cosmo e Radarsat II  (Lucas et 

al., 2006). In this context, another purpose of this paper is to 

report on the combined use of optical and SAR images within a 

GEOBIA framework. 

 

1.1 Objectives 

The objectives of this study were (a) to evaluate the suitability 

of SAR imagery for discriminating savanna physiognomies, (b) 

to combine SAR and optical imagery for achieving improved 

accuracy, and (c) to develop a hybrid approach based on pixels 

and objects to represent gradients of vegetation density. 

 

2. SITE AND DATA 

2.1 Study Area 

The Brazilian Biome called Cerrado is the second largest in the 

country covering approximately two million square kilometres. 

It has been considered an important biodiversity hotspot (Myers 

et al., 2000) due to the highest levels of species richness and 

endemism when compared to other savanna-like Biomes of the 

world. Although much concern has been raised by the 

international community over the destruction of Amazonia, this 

Biome is far better preserved and protected than the Cerrado. In 

the past 40 years, intensive colonization has converted more 

than 50% of the Cerrado’s natural vegetation to other land uses, 

in contrast to 20% that has been reported for the rain forests in 

the Amazonia. Furthermore, legal protection granted within 

National or State Parks and nature conservation reserves 

represents less than 3% of the Cerrado area, compared to 19% 

of the Amazonia. Thus, appropriate mapping and monitoring 

strategies must be urgently developed to guide sustainable 

management and conservation plans. 

 

Natural vegetation in the Cerrado Biome varies from grasslands 

to dense forests. Commonly used classification systems (Veloso 

et al., 1991) include physiognomies called campo limpo 

(savanna grassland), campo sujo (mainly grass with scattered 

shrubs), campo cerrado (savanna park), cerrado (savanna sensu 

strictu), cerradão (savanna woodland), vereda (wet lands 

dominated by palm trees), and enclaves of Atlantic Forests 

(Carvalho 2008). Except for the very dense formations 

(cerradão, vereda and forest enclaves), boundaries between 

patches of different physiognomies are essentially 

indeterminate. These boundaries are characterized by a gradient 

of tree cover and biomass sometimes spanning hundreds of 

meters, which represent challenges to the definition of 

appropriate mapping methods. 

 

The study site is located in the North of Minas Gerais, Brazil, 

within the municipality of Cônego Marinho and bounded by the 

southern latitudes 14o 48' 28" and 15o 05' 02", and western 

longitudes 44o 42' 38" and 44o 25' 27" (Figure 1). The 

predominant vegetation physiognomies are cerrado and campo 

cerrado, interspersed with a few vereda patches. Most of the 

area is on a flat plateau with altitudes around 800 m. Land use 

is characterized by animal husbandry and localized agriculture. 

Besides, areas of impoverished vegetation occur due to cattle 

grazing and selective logging for charcoal production. 

 

 
 

Figure 1. Location of the study area in Minas Gerais, Brazil. 

 

2.2 Imagery and Pre-processing 

Imagery from the Phased Array L-band Synthetic Aperture 

Radar (PALSAR) and the Thematic Mapper (TM) sensors were 

used in this study. The PALSAR image was acquired in 

September 5th 2007, in dual polarization (HH and HV) with an 

off-nadir viewing angle of 34.3o. The TM image was acquired 

in September 10th 2007. 

 

Standard georreferencing and corrections for terrain effects 

using orthorectified Landsat TM (Geocover) and SRTM as 

reference datasets were conducted prior to image segmentation 

and classification. The SAR image was converted from 

amplitude data to normalized radar cross-section σ0 and the TM 

image was converted to apparent reflectance. Both conversions 

were based on published calibration factors. Additionally, the 

PALSAR image was resampled to 30m to match the spatial 

resolution of the TM image. 

 

2.3 Reference Data and Image Transforms 

Visual interpretation of a high spatial resolution Ikonos image 

was used as the reference pattern for evaluating segmentation 

and classification procedures. The whole study area was 

partitioned by an experienced interpreter (Figure 2) who 

delineated polygons representing the following land cover 

classes occurring within the study area: Bare Land, Campo 

Cerrado, Degraded Campo Cerrado, Cerrado, Degraded 

Cerrado, and Wet Land. 

 

It should be noted that visual interpretation of land cover 

classes with indeterminate boundaries, like transitions between 

Cerrado and Campo Cerrado, is also uncertain. Hence, 

polygons visually delineated for these classes were not 

considered when evaluating segmentation performance. On the 

other hand, wet and bare lands, as well as areas of degraded 

vegetation were clearly distinguishable on the high-resolution 

images as illustrated in Figure 3. 
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Figure 2. Reference map derived from visual interpretation. 

 

 
 

Figure 3. Subset of Ikonos image used for visual interpretation 

 

A number of traditional transformations were applied to the 

PALSAR and TM images to investigate their potential to 

improve classification performance. In order to remove noise 

from the PALSAR image, two filtering procedures were 

implemented: the ‘à trous’ undecimated wavelet transform 

(Holschneider et al., 1989) was used to generate four 

approximation images at increasing scale levels; the Enhanced 

Lee Filter (Lopes, 1990) was applied to produce a speckle-

reduced SAR images. From the TM image, the following 

trasformations were computed: the Normalized Difference 

Vegetation Index (NDVI); linear spectral unmixing of soil, 

vegetation, and shadow fractions; and Tasseled Cap brightness, 

greenness, and wetness indices. 

 

3. OBJECT-BASED IMAGE PROCESSING 

3.1 Image Segmentation 

The SegSAR algorithm (Souza, 2005) was used to extract image 

objects from both PALSAR and TM images. This algorithm 

was selected after preliminary tests evidenced its good 

performance for segmenting SAR images when compared to 

commercially available segmentation software. SegSAR is a 

hybrid approach to multiband image segmentation based on a 

combination of image compression, region growing, region 

grouping, and edge detection algorithms. It can also run two 

contrasting models based either on region homogeneity (cartoon 

model) or heterogeneity (texture model) tests. Although 

originally developed and well suited to process SAR images, 

the software includes routines to segment optical images as 

well. In both cases, segmentation starts on the image at the 

highest compression level using automatically generated 

similarity thresholds. Then, tests for edge detection, region 

homogeneity/heterogeneity, and region grouping are performed 

at each compression level until the original uncompressed 

image is reached. The algorithm ends by testing if each region is 

larger than the user defined minimum segment area. The 

fundamental difference between SAR and optical image 

segmentation is related to the homogeneity/heterogeneity test. 

For SAR images, a critical test value is automatically obtained 

from the image’s Gamma distribution, whereas for optical 

images the user must provide this parameter. Reasonable 

segmentation outputs were obtained using the standard settings 

(Table 1) suggested by the software developer, Dr. Souza (pers. 

comm.), for segmenting the PALSAR and the TM images. 

 
Parameter PALSAR TM 

Compression levels 6 6 

Model Cartoon Cartoon 

Minimum area 20 pixels 20 pixels 

Critical value auto 0.30 

Table 1. SegSAR settings used in this study. 

 

In order to evaluate object extraction from optical and RaDAR 

images using SegSAR, we intersected polygons derived from 

manual delineation and the ones obtained automatically. Then, 

the best segmentation result based on visual inspection was 

selected for further processing. 

 

3.2 Computation of Object’s Attributes 

Attributes related to shape and area were calculated for each 

segmented polygon (Table 2). Polygons were also characterized 

by attributes derived from statistical measures of their pixel 

values (Table 3) in each image band, as well as in each 

transformation listed in section 2.3. Thus, 366 attribute 

variables were derived for each polygon. 

 
Attribute Name Attribute Name 

Border Index Length 

Area Rectangular Fit 

Roundness Radius of Smallest Enclosing Ellipse 

Compactness Density 

Shape Index Elliptic Fit 

Main Direction Asymmetry 

Radius of Largest Enclosed Ellipse Width 

Length/Width Border Length 

Table 2. Attributes related to shape and area (Definiens 2007). 

 
Attribute Name Attribute Name 

Mean GLCM Entropy 

Gray Level Co-occurrence Matrix (GLCM) Mean GLDV Entropy 

Gary Level Difference Vector (GLDV) Mean GLCM Contrast 

Standard Deviation GLDV Contrast 

GLCM Standard Deviation GLCM Dissimilarity 

GLCM Angular 2nd Moment GLCM Correlation 

GLDV Angular 2nd Moment GLCM Homogeneity 

Table 3. Attributes related to pixel values (Definiens 2007). 

 

3.3 Data Mining and Classification 

Due to the large number o attributes available to the 

classification process, data mining tools were used to select the 

ones providing the best separation among different land cover 

classes. Object based data mining and classification were 

Wet Land 

Cerrado 

Bare Land 

Degraded Cerrado 
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performed using a decision tree approach based on CART – 

Classification And Regression Trees (Breiman et al., 1984). 

 

Data mining and classification with CART starts from a set of 

examples (i.e., training objects) described by a set of attributes 

(366 in this study). A binary decision rule is defined to split the 

set of image objects into subsets more homogeneous than the 

original one. Each subset is then subject to a new split 

generating even more homogeneous (sub-)subsets. 

Theoretically, the procedure iterates until ‘pure’ subsets are 

obtained. Decision rules at each split were obtained by 

thresholding the best discriminant attribute (Brodley and 

Utgoff, 1995). The final subset containing the best discriminant 

attributes is an indicator of variable importance and a way of 

discovering knowledge from highly dimensional decision 

spaces (i.e., data mining).  The choice of attributes to be used in 

each split was guided by a quality measure – the GINI index of 

diversity – applied to the generated subsets. Final classification 

trees were selected based on the minimum error cost, which 

indicates the optimal relationship between tree size and 

classification errors based on cross-validation (Breiman et al., 

1984). Image segmentation with SegSAR generated a total of 

5486 image objects. From these, 964 samples were selected to 

compose the training set (Table 4). 

Land cover class Number of samples 

Bare Land 215 

Campo Cerrado 98 

Cerrado 209 

Degraded Campo Cerrado 53 

Degraded Cerrado 176 

Wet Land 213 

Table 4. Description of training samples. 

 

Three sets of attributes were input to data mining and 

classification to evaluate the effects of including information 

derived from SAR imagery for discriminating land cover 

classes. Firstly, a model was constructed using all shape 

attributes and attributes derived from the optical image. This 

feature set was composed by 198 attributes and called 

‘shape+optical’. Then, a second model was constructed using 

all shape attributes and attributes derived from the SAR image, 

resulting in a set called ‘shape+radar’ composed by 184. 

Finally, the last model was adjusted considering all 366 

variables derived from shape, optical and SAR attributes. This 

last set was called ‘shape+optical+radar’. 

 

4. PIXEL-BASED IMAGE PROCESSING 

4.1 Tree Cover Estimation 

Polygons classified as Cerrado, Campo Cerrado and their 

respective degraded classes were selected to be further 

processed using a pixel-based approach. This approach was 

intended to evaluate the continuous characterization of 

vegetation areas, since thematic mapping of these areas proved 

inaccurate with considerable confusion among savanna 

physiognomies. The model developed by Tonelli (2008) for an 

area encompassing the present study site was used to estimate 

continuous fields of savanna tree cover. Tonelli’s model was 

also adjusted using decision trees, but this time in regression 

mode (Breiman et al., 1984). Regression with decision trees is 

similar to classification, but instead of outputting categorical 

information (e.g., land cover classes), the outputs are composed 

by continuous variables (e.g., percentage tree cover). The author 

mapped tree crowns on high spatial resolution Ikonos images 

and adjusted regression models to describe the relationship 

between reflectance values observed on pixels of medium 

spatial resolution TM images and the respective mapped tree 

crown cover. This procedure has been successfully used to map 

tree cover and impervious surfaces at global scale levels 

(DeFries et al., 2000; Hansen et al., 2003). 

 

5. RESULTS AND DISCUSSION 

5.1 Image Segmentation 

TM bands 1 to 5, and 7; as well as PALSAR HH and HV; 

Wavelet transformed PALSAR HH and HV; and Lee filtered 

PALSAR HH and HV were input to SegSAR, thus generating 

four segmented images. Segmentation results are illustrated in 

figure 4. Polygons automatically extracted from the optical 

image (Figure 4a) were selected for further processing because 

of better agreement with reference polygons. Segmentation 

evaluation was performed comparing a number of Wet Land 

and Bare Land areas from the reference map with the outputs of 

SegSAR. In all cases, the pattern shown in figure 4 was 

confirmed. Smoothing with wavelets (Figure 4c) and filtering 

with the Enhanced Lee filter (Figure 4c) provided no significant 

improvements over the segmentation of unprocessed PALSAR 

images (Figure 4b). 

 

 
Figure 4. Results of image segmentation using SegSAR. 

 

5.2 Object Based Image Classification 

Three decision tree models were adjusted according to the 

available attribute sets, viz., shape+radar (184 attributes), 

shape+optical (198 attributes), and shape+optical+radar (366 

attributes). 

 

The shape+radar model was created with 12 nodes and a 

relative error cost of 0.536. Before pruning, the original tree 

was composed by 166 nodes and showed a relative error cost of 

0.606. Cross validation produced 89.63% of overall correct 

classification for this model adjustment. 

The shape+optical model was created with 16 nodes and a 

relative error cost of 0.144. Before pruning, the original tree 

was composed by 38 nodes and showed a relative error cost of 

0.189. Cross validation produced 98.03% of overall correct 

classification for this model adjustment. 

The shape+optical+radar model was created with 7 nodes and a 

relative error cost of 0.148. Before pruning, the original tree 

was composed by 36 nodes and showed a relative error cost of 

0.191. Cross validation also produced 98.03% of overall correct 

classification for this model adjustment. 

 

Properties of decision tree adjustments as described above give 

valuable information regarding classification performance. For 

a b 

c d 
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instance, it is clear that classification using solely attributes 

derived from polygons shape attributes and radar data values 

was more complicated. This fact is evidenced by the very large 

initial tree created before pruning (166 nodes) and also by the 

higher final error cost (0.536). It indicates that the provided set 

of attributes provided lower discrimination power when 

compared to the other two sets of attributes. 

Classification performance was also evaluated using standard 

error matrices (Appendix) derived by the comparison of each 

resulting classification map and the reference map (Figure 5). 

Note that land cover classes with sharp boundaries, like Wet 

Land and Bare Land, were well depicted using object-based 

classification. In contrast, the spatial pattern of savanna 

distribution was not characterized properly. 

 
Figure 5. Reference image (top) and the most accurate 

classification map (bottom). 

The performance for classifying savanna physiognomies is also 

evident in table 5 by looking at class mapping accuracies 

(Kalensky and Scherk, 1975). The best classification map 

according to overall accuracy and Kappa coefficient was the 

map produced using the ‘shape+optical+radar’ attribute set 

(Table 5). In this map, Degraded Cerrado and Degraded Campo 

Cerrado showed the lowest accuracies, whereas Bare and Wet 

lands the highest. These figures might be reflecting the 

complexity of transition zones among savanna physiognomies, 

as well as differences in degradation intensity. On the other 

hand, Bare and Wetlands were mapped with higher accuracies 

probably due to their shaper boundaries aiding segmentation 

and distinct reflectance properties, specially in areas of Bare 

Land. 

 shape+ 

radar 

shape+ 

optical 

shape+ 

optical+radar 

Overall accuracy 34.82 57.51 59.56 

Kappa 18.53 45.53 47.69 

Bare Land 18.04 48.11 65.40 

Campo Cerrado 18.73 39.46 43.63 

Degr. Campo Cerrado 16.99 27.19 31.19 

Cerrado 25.85 48.72 49.25 

Degr. Cerrado 28.03 36.88 35.71 

Wetland 20.90 58.15 56.43 

Table 5. Classification accuracy measures (%). 

 

5.3 Importance of Object’s Attributes 

From the 366 attributes derived in this study, data mining with 

decision trees indicated, in order of importance, the ones 

providing the best discrimination among land cover classes. 

Table 6, 7, and 8 show the importance measures derived from 

data mining with CART. Ranking was based on primary 

splitters (i.e., attributes actually used within tree nodes) that 

scored 10 or higher. 

Attribute Score 

GLCM Homogeneity from TM band 4 100.0

0 

Mean value from TM band 2 94.20 

Mean NDVI value 87.59 

Mean value from TM band 3 63.50 

GLCM Homogeneity from TM band 7 53.56 

GLDV Entropy from TM band 3 12.58 

Mean value from TM band 7 11.64 

Standard deviation value from TM band 2 11.35 

Table 6. Importance of attributes from set ‘shape+optical’. 

 

Attribute Score 

GLDV Entropy from HH 100.0

0 

Mean value from 1st scale Wavelet HH 74.70 

Standard deviation value from HV 49.32 

GLCM Mean value from 2nd scale Wavelet HV 19.67 

Mean value from Lee filtered HH 18.68 

GLDV Angular 2nd moment from 1st scale Wavelet HV 17.96 

GLCM Standard deviation from HV 14.02 

Mean value from HH 11.68 

GLCM Mean from 1st scale Wavelet HH 11.38 

Table 7. Importance of attributes from set ‘shape+radar’. 

 

Attribute Score 

GLCM Homogeneity from TM band 4 100.0

0 

Mean value from TM band 2 94.20 

Mean NDVI value 87.59 

Mean value from TM band 3 63.50 

GLCM Homogeneity from TM band 7 53.56 

GLDV Entropy from TM band 3 12.58 

Table 8. Importance of attributes from set 

‘shape+optical+radar’. 

 

The six most important attributes in tables 6 and 8 are exactly 

the same. This means that the inclusion of radar attributes 

provided little or no improvement for discriminating among 

land cover classes in this study. Likewise, shape and area 

attributes were not used as predictors in any adjusted model. 

This type of information is probably most important to 

characterize anthropogenic features such as the ones found in 

urban and agricultural areas. 

 

The presence of TM band 4 as the most important attribute, TM 

band 2 in second place, followed by the NDVI, shows the 

superior class separation provided by attributes related to 

reflectance values in the visible and near infrared regions of the 

electromagnetic spectrum. These results agree with axioms of 

remote sensing which state the importance of visible and near 

infrared energy for characterizing vegetated areas. Additional 

support is provided by the importance of basic statistical 

descriptors like means and standard deviations of visible and 

near infrared reflectance. 
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Texture measures derived from GLCM and GLDV showed the 

highest importance scores when using optical and SAR data 

respectively. GLCM Homogeneity is a measure of the overall 

smoothness and similarity of pixels within objects. Our results 

showed that these measures were useful for quantifying internal 

continuity in objects’ reflectance variations. Entropy was 

important when considering SAR attributes. It measures 

disorder or complexity of the elements in the GLCM and seems 

to be correlated with differences in SAR backscatter of the land 

cover classes considered in this study. Finally, the importance 

of noise reduction provided by wavelet transforms was also 

verified. 

 

5.4 Tree Cover Map 

Image objects that could not be resolved at the present scale 

level were selected to be modelled with regression trees. Figure 

6 illustrates the proposed combination of classes modelled 

using an object-based approach (Wet and Bare lands), as well as 

using a pixel-based approach (Cerrado Tree Density). This 

procedure provided a better characterization of transition zones 

within savanna physiognomies. Further research is being 

initiated to relate the patterns modelled here to biomass spatial 

distribution determined from field and LiDAR sampling. 

 
 

Figure 6. TM colour composite (top), best object-based 

classification (middle), and pixel-based regression (bottom). 

 

6. CONCLUSIONS 

The following statements could be derived from this study: 

 

• SAR images did not provide accurate segementation of 

objects with sharp boundaries within the savanna 

physiognomies studied. 

• Classification accuracy was not enhanced by including SAR 

images nor any of its the transforms. 

• Transitions between savanna physiognomies were properly 

characterized using continuous fields of tree cover. 

• Models of continuous distribution of vegetation cover need 

to be validated with detailed biomass measurements. 
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9. APPENDIX 

 Reference Map 

 BL CA Deg.CA CE Deg.CE WL Total(%) 

BL 77.87 1.7 5.17 0.42 0.39 0.21 5.29 

CA 0.25 60.85 23.48 9.48 10.2 3.77 20.78 

Deg.CA 20.93 20.25 64.65 3.37 9.89 2.17 14.01 

CE 0.01 2.27 0.41 51.55 8.53 0.02 25.28 

Deg.CE 0.41 12.49 2.81 34.43 70.81 3.83 31.65 

WL 0.52 2.43 3.46 0.75 0.18 89.99 2.98 

Total(%) 100 100 100 100 100 100 100 

Table 9. Confusion matrix from classification 

‘shape+optical+radar’. 

 
 Reference Map 

 BL CA Deg.CA CE Deg.CE WL Total(%) 

BL 75.97 5.75 11.87 1.29 2.13 0.98 7.3 

CA 5.56 52.95 20.1 7.64 8.88 1.96 18.05 

Deg.CA 17.53 25.15 61.45 5.01 9.54 3.21 15.28 

CE 0.01 2.32 0.41 50.55 6.26 0.02 24.42 

Deg.CE 0.41 11.64 2.78 34.79 73.1 3.83 32.06 

WL 0.52 2.19 3.4 0.71 0.08 89.99 2.89 

Total(%) 100 100 100 100 100 100 100 

Table 10. Confusion matrix matrix from classification 

‘shape+optical’. 

 

 

 

 

 

 

 

 
 Reference Map 

 BL CA Deg.CA CE Deg.CE WL Total(%) 

BL 47.96 15.09 16.35 8.25 3.5 11.03 11.66 

CA 33.15 41.54 30.96 35.05 26.86 5.66 33.84 

Deg.CA 14.17 19.05 38.49 9.5 6.65 4.14 13.46 

CE 1.21 11.77 5.45 30.31 25.22 4.72 21.39 

Deg.CE 0.8 2.23 5.45 11.44 37.17 0.02 13.05 

WL 2.71 10.31 3.3 5.44 0.61 74.42 6.6 

Total(%) 100 100 100 100 100 100 100 

Table 11. Confusion matrix matrix from classification 

‘shape+radar’. 


