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ABSTRACT: 
 
Straightforward mapping of detailed heathland habitat patches and their quality using remote sensing is hampered by (1) the intrinsic 
property of a high heterogeneity in habitat species composition (i.e. high intra-variability), and (2) the occurrence of the same species 
in multiple habitat types (i.e. low inter-variability). Mapping accuracy of detailed habitat objects can however be improved by using 
an advanced approach that specifically takes into account and exploits these inherent patch characteristics. To demonstrate the idea, 
we developed and applied a multi-step mapping framework on a protected semi-natural heathland area in the north of Belgium. The 
method consecutively consists of (1) a 4-level hierarchical land cover classification of hyperspectral airborne AHS image data, and 
(2) a kernel-based structural re-classification algorithm in combination with habitat patch object composition definitions. Detailed 
land cover composition data were collected in 1325 field plots. Multi-variate analysis (Ward’s clustering; TWINSPAN) of these data 
led to the design of meaningful land cover classes in a dedicated classification scheme. Subsequently, the data were used as reference 
for the classification of hyperspectral AHS image data. Linear Discriminant Analysis in combination with Sequential-Floating-
Forward-Selection (SFFS-LDA) was applied to classify the hyperspectral images. Classification accuracies of these maps are in the 
order of 74-93% (Kappa= 0.81-0.92) depending on the classification detail. To subsequently obtain habitat patch (object) maps, the 
land cover classifications were used as input for a kernel-based spatial re-classification process, in combination with a rule-set that 
relates specific Natura 2000 habitats with a composition range of the land cover classes. The resulting habitat patch maps illustrate 
the methodology’s potential for detailed heathland habitat characterization using hyperspectral image data, and hence contribute to 
the improved mapping and understanding of heathland habitat, essential for the EU member states reporting obligations under the 
Habitats Directive.  
 
 

1. INTRODUCTION 

Human activities such as urbanization, industrialization and 
successive agricultural revolutions cause rates of habitat 
destruction and species loss to continue to rise. As a result, 
conserving biodiversity has become imperative during the last 
decades, and conservation action is increasing globally as the 
scale of the threat to biodiversity is more widely recognized 
(Pullin et al., 2004). 
In Europe, the most important standards for biodiversity 
protection are the Habitats Directive (92/43/EEC) (HabDir) and 
the Birds Directive (79/409/EEC), which form the legal basis of 
the Natura 2000 network. Among the various commitments 
imposed by these legal initiatives on EU member states, are (1) 
the design of accurate, simple and repeatable methods for 
habitat and species monitoring and surveillance; and (2) the 
reporting on the 'conservation status' of the habitats present in 
the member state. In practice, these commitments imply that 
every 6 years all EU member states are obliged to report on the 
conservation status of the protected habitats, and the 
methodology applied for the assessment (Förster et al., 2008). 
The conservation status of the habitats has to be assessed in 
terms of the range, the covered area, and the overall quality as 
expressed by the structure and ecological functioning of the 

habitat. These assessments require detailed, reliable and up-to-
date habitat distribution maps, stretching further than merely 
attributing a given vegetation patch to a habitat type, but also 
giving indications on its quality. The first implementations of 
the directive by member states however revealed a great lack of 
knowledge on habitat distribution in many member states 
(Evans, 2006). An easily operated, economically priced and as 
far as possible automated application is hence desired to meet 
these high data needs. 
As remote sensing products can provide a systematic, synoptic 
view of the earth cover at regular time intervals, they have been 
repeatedly indicated as a possibly useful tool to aid in the 
mapping and monitoring of habitat types and biodiversity 
(Förster et al., 2008; Nagendra et al., 2008). Most efforts have 
however been directed at providing data at larger patch- and 
landscape-scales using multispectral satellite imagery, such as 
Landsat ETM+ or Quickbird data. Whereas the scale of such 
analysis may be very valuable for the studies of human drivers 
of land cover change or coarse habitat mapping at a global or 
national scale, its application in the field of detailed biodiversity 
or habitat mapping (scales 0.01-0.1 ha) is rather limited and 
tends to be less effective due to errors related to terrain 
shadowing, geo-locational discrepancies, and other factors 
(Carlson et al., 2007; Díaz Varela et al., 2008; Nagendra et al., 
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2008). Hyperspectral data (15-200 bands), with the ability to 
collect information at a high spectral resolution using 
contiguous spectral bands, each with a narrow spectral range, 
are known to be capable of fairly accurate identification of 
different species (Carlson et al., 2007). Clark et al. (2005) for 
example have shown that variability in hyperspectral 
information can be used to great effect for discriminating tree 
species in landscapes including tropical forests, despite the 
greater complexity of such environments. Notwithstanding the 
potential of hyperspectral imagery for habitat and diversity 
studies, its use in this research domain is rather limited 
(Nagendra et al., 2008).  
Our objective is to demonstrate the potential of hyperspectral 
remote sensing in combination with advanced image analysis 
techniques to map and discern detailed (even ≤ 0.1 ha) 
heathland habitat patch objects and valuable quality-indicating 
characteristics. By doing so, we contribute to making remote 
sensing more relevant for applied ecology, and provide a remote 
sensing framework with possible use for the legislative 
reporting obligations of each EU member state under the 
Habitats Directive.  
 

2. MATERIALS AND METHODS 

2.1 Study area 

The study area, the Kalmthoutse heide (Figure 1), has been 
designated by the Flemish authorities as a part of the Natura 
2000 network since 1996, and is located in the north of Belgium 
(Lat.: 51.41°, Long.: 04.37°). Its central heathland area is almost 
a 1000 ha in size and contains a mixture of wet and dry heath, 
inland sand dunes and water bodies (De Blust & Slootmaekers, 
1997). An overview of the Natura 2000 habitat types that are 
well-represented in the area is given in Table 1. 
Despite its protected status, and due to its location in the 
vicinity of the city and the harbour of Antwerp, the area is still 
affected by anthropogenic influences such as eutrophication, 
intense recreation and desiccation (through drinking water 
extraction). Nitrogen deposition from the sky accelerates dune 
fixation by the alien invasive moss species Campylopus 
introflexus, and leads to an increased dominance of Molinia 
caerulea (purple moorgrass) in wet and dry heaths, at the 
expense of the former species diversity. In recent years, some 
intensive and uncontrolled fires have destroyed nearly one-third 
of the area’s heaths, which were subsequently rapidly colonized 
by Molinia caerulea. To counteract negative influences, 
dedicated management has been implemented since the 1970s. 
Measures include mainly grazing with sheep and cows, sod-

 
Figure 1. Figure 1. Location and illustration of the study area 

'Kalmthoutse Heide' in the north of Belgium. 

cutting, mowing and tree removal, to keep the heathland open 
and in good condition (De Blust & Slootmaekers, 1997; De 
Blust, 2007). The resulting large spatial heterogeneity of habitat 
types (and quality) makes the area specifically suitable to 
demonstrate the potential of the proposed methodology. 
 

2.2  Ground reference data 

Two extensive and independent field reference data sets were 
acquired in June-September 2007 (period of image acquisition), 
and June-September 2009 respectively.  
During the field campaign of 2007, sample plots were selected 
in the field as circles of 10 m diameter that represented 
homogeneous examples of one of the predefined land cover 
classes. Centre points of plot circles were located using GPS. To 
ensure adequate description of vegetation composition and 
structure in the sample plot, data collection was based on the 
BioHab-methodology (Bunce et al., 2008), and included cover 
of plant life forms and dominant species, as well as 
environmental and management qualifiers. Cover was always 
estimated as seen from above, thus adding up to 100%, to 
resemble  a sensor’s viewpoint. Some plant species were split 
up into multiple land covers, and recorded separately to provide 
data on quality indicators (e.g. Calluna vulgaris development 
phases: young, mature, old, and mixed). In 2007, samples were 
collected at a total of 694 plots, to which an extra 146 plots 
were added that were collected in the same area in 2006. 
Additionally, sample plots of easily recognizable classes were 
taken from orthophoto-interpretation, supported by expert 
terrain knowledge. This specifically provided additional 
samples for bare sand, arable fields, agricultural grasslands, 
Juncus effusus-swards and unvegetated water bodies, raising the 
total sample size in the ground reference (land cover training) 
dataset to 1325 plots.  
To enable independent validation of the habitat map results, an 
additional field campaign was performed in 2009. A 
thematically and geometrically stratified random sampling 
survey (586 plots) was set out to directly collect habitat 
information, in contrast to the detailed land cover survey of 
2007. Although there is a two-year time gap between both 
surveys, the habitat patches present are expected to not have 
changed drastically over this period, and areas that clearly had 
changed since 2007 were omitted from the sample. Possible 
additional errors in the validation accuracies are therefore 
thought to be of minor influence. The field surveys were 
performed by two different people to enhance the independency 
of the data sets.  

HabDir  
code Habitat type 

2310 Dry sand heaths with Calluna and Genista 

2330 Inland dunes with open Corynephorus and Agrostis 
grasslands 

4010 Northern Atlantic wet heaths with Erica tetralix 

4030 European dry heaths 

6230 Species-rich Nardus grassland 

7150 Depressions on peat substrates of the 
Rhynchosporion 

3160 Natural dystrophic lakes and ponds 

9190 Old acidophilous oak woods with Quercus robur 
on sandy plains 

Table 1. Natura 2000 habitat types present in  
the 'Kalmthoutse heide' study area 
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2.3 Hyperspectral image data 

In June 2007, Airborne Hyperspectral line-Scanner radiometer 
(AHS-160) images of the Kalmthoutse Heide study area were 
acquired. The AHS sensor was mounted on a CASA C-212 
airplane operated by INTA, equipped with 63 spectral bands in 
the visual and near-infrared spectral domain (400 to 2500 nm). 
The images, acquired with a spatial resolution of 2.4 by 2.4m, 
were radiometrically calibrated and accurately geo-referenced. 
Geometric and atmospheric correction were performed using 
VITO’s in-house Central Data Processing Center (CDPC) 
(Biesemans et al., 2007). Subsequently, all 6 image products 
were mosaicked into a nearly seamless data product. To do so, 
atmospheric influence on reflectance values caused by off-nadir 
viewing was minimized by using data from the image with the 
smallest View Zenith Angle (VZA) in overlapping areas. 
 
2.4 Methodological framework 

Based on the inherent properties of (semi-)natural heathland 
habitats and of hyperspectral image data, we developed a 
methodological framework that enables (semi-)operational 
habitat quantity and quality mapping at the patch level. In 
summary, the method consists of breaking down habitats into a 
number of (hierarchical) land cover classes that 1) are expected 
to be spectrally distinct; 2) incorporate parameters that can 
serve for habitat quality assessment; and 3) enable the 
subsequent reconstruction to habitats using patch composition. 
In a two-step process, the hyperspectral data are first classified 
using field data as training, and subsequently the obtained land 
cover classification maps are transformed to habitat (quality) 
patch maps by means of a spatial kernel-based re-classification 
technique in combination with a habitat reconstruction rule-set. 
Figure 2 gives a schematic overview of the proposed 
methodology. In the following sections, each separate step in 
the methodology is explained in detail. 
 
2.5 Design of a dedicated classification scheme 

In most cases, the observed land cover pattern in a habitat patch 
(presence/absence, relative abundance) is a result of processes 
acting on the habitat patch, and therefore reveals information 
that can be used to assess the quality of that patch. While some 
land cover types indicate a good habitat quality, others indicate 
processes that negatively affect habitat quality. Several member 
states have made use of this inherent complexity of habitats to 
draw up evaluation frameworks for the assessment of quality of 
habitat patches (e.g. T’jollyn et al., 2009). For habitat type 2310 
for example (Table 1), positive quality indicators are the 
presence of bare sand and patches of mosses and lichens, 
whereas encroachment by grasses (especially purple moorgrass, 
Molinia caerulea), trees and the invasive Campylopus moss are 

negative quality indicators. 
In order to raise the chances of successful habitat mapping and 
quality information extraction from hyperspectral remote 
sensing data, the classification scheme should comprise of 
classes that are delimited based on attributes that strongly 
influence the spectral signature. Plant architecture, above-
ground biomass and dominant species are such attributes. 
Therefore, the list of habitats present in the study area (Table 1) 
was translated into a list of land cover classes, which can be 
interpreted as spatial units of homogeneous vertical structure 
and plant species dominance. Once the image is classified, these 
classes can then be translated back into Natura 2000 habitats, by 
making use of the spatial arrangements of classes in the image 
to facilitate this back-translation and to incorporate information 
on habitat quality.  
In a first step, a provisional list of expected land cover classes 
was drawn up from the list of habitats present. Habitat 
definitions (European Commission, 2007; amongst others) and 
quality indicators (T’jollyn et al., 2009) served as input for this 
translation. Focus was put on quality indicators that relate to 
vegetation patterns and processes in the habitat, and not to 
species composition, because the latter relies on the presence of 
typical but usually rare (and often small) plant species that 
hardly influence the spectral signature. In a second step after the 
field work, the collected data were analysed using two 
contrasting techniques of multivariate analysis: (1) TWINSPAN 
(a divisive method; Hill and Smilauer, 2005) and (2) Ward’s 
clustering with Euclidean distance measure (an agglomerative 
method; McCune and Mefford, 2006). For each plot, the cover 
(in %) of the plant life forms as well as of the dominant species 
(i.e. all species having 10% or more cover in the vegetation) 
were used as input variables, thus restricting the analysis to 
those parameters that are hypothesized to show the highest 
correlation to the spectral signatures. The outcome of both 
methods was compared and clear outliers were removed from 
the dataset, to assure that remaining clusters were homogeneous 
in sample composition. Each of the retained clusters was 
consequently interpreted and identified with a land cover class 
from the provisional list. Some of these predefined classes 
turned out not to be present in the study area in sufficient 
amount or in sufficiently large patches and were removed from 
the list (e.g. Rhynchosporion vegetations). Others were slightly 
adapted to better correspond to the field situation. This led to a 
final list of land cover classes (Figure 3d). In a final step, the 
land cover classes were manually arranged in a 4-level 
hierarchical classification system, based on similarity of plant 
life forms or dominant species present.  
 
2.6 Detailed land cover classification 

The land cover classifications were performed using one-
against-one majority-voting Linear Discriminant Analysis 

Figure 2. Flowchart of the proposed methodology for habitat patch quantity and quality mapping 
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(LDA) in combination with Sequential-Floating-Forward-
Search (SFFS) band selection algorithm. With this 
methodology, the complexity of the multi-class assignment 
problem is circumvented by combining several binary LDA 
classifiers. The one-against-one approach implies that for each 
pixel spectrum all possible pairs of output classes are compared, 
resulting in C(C-1)/2 classifiers. The finally assigned land cover 
class is then decided through a maximum-voting decision rule. 
The Sequential-Floating-Forward-Search band selection 
technique was used to extract the band combination that leads to 
the highest accuracies. In short, the technique sequentially adds 
one additional band at each step, but additionally one or more 
backward steps are taken to remove a previously selected 
variable to see if the separability measure can be increased at 
that level (Pudil et al., 1994). One of its main advantages over 
other feature selection or extraction techniques is that it 
optimizes the selection to the problem at hand, instead of 
merely reducing the computational complexity or feature space. 
This classification approach has proven to be robust for 
classification of hyperspectral data in previous vegetation 
studies (Deronde et al., 2008; Kempeneers et al., 2005). 
The results of the land cover classifications are discussed in 
section 3.1, albeit briefly as they are not the focus of this study. 
 
2.7 Rule-set for habitat compositions of land cover classes 

The classification scheme was designed in such a way that the 
list of habitats present in the study area is translated into a list of 
land cover classes that can be classified using the spectral 
signatures. These land cover classes can conversely be 
interpreted as spatial units which can serve to build up a map of 
Natura 2000 habitat patch objects. Certain land cover classes 
can however occur in different habitat types, hampering a 
straightforward re-classification.  
 To circumvent this issue, we defined a number of rule-sets that 
characterize each habitat, using percentage ranges of land cover 
composition. Based on the descriptions of habitats (European 
Commission (2007); amongst others), we identified which land 
cover classes can occur in each habitat type, and what the 
minimal and maximal percentage of occurrence within a habitat 
patch are. Two different rule-sets were compiled: (1) one that 
relates the land cover composition only to the type of habitat; 
and (2) a second in which the composition rules not only relate 
to the habitat type, but to specific quality indicators as well. 
Composition overlap between different habitat type definitions 
was allowed as this possibly might reflect and allow to map the 
true fuzziness of patches (e.g. at the borders). For each habitat 
type, a maximum presence of 10% of land cover classes other 
than those that characterize the habitat was also allowed. This 
rule was added because habitats are intrinsically heterogeneous 
and the presence of a non-typical land cover to such a low 
extent does not influence the overall habitat patch 
characterization. Moreover, such a rule tolerates up to 10% of 
misclassification in the land cover classification, making the 
final habitat map result more robust, i.e. less sensitive, to 
errors/noise in the prior land cover classification.  
 
2.8 Contextual re-classification to habitat patch objects 

To reclassify the land cover classification map to a habitat map, 
we adopted a modification of the algorithm proposed by 
Barnsley and Barr (1996). In their kernel-based re-classification 
technique, a convolution kernel is moved across the land cover 
classification image. At each pixel, the local spatial patterns in a 
kernel of fixed size (e.g. 3x3) are explored, and compared to a 
set of reference kernels. These (reference) template kernels 

characterize each desired output class type, and are based on 
training datasets in the initial land cover map. Our re-
classification method differs from the above technique in that:  
- it does not take into account the spatial arrangement within 

the kernel, but merely looks at the class composition (in %). 
- template kernels are not defined based on training areas in 

the initial land cover map, but using knowledge-based 
habitat compositions. 

In a first approach a habitat (or overlap) class was only assigned 
when the window land cover composition specifically fell into 
the percentage ranges of that habitat. If it did not fit any of the 
percentage definitions, the pixel was marked as being no habitat 
(of interest).  
 

3. RESULTS AND DISCUSSION 

3.1 Land cover classification results 

A true-color image and level-4 (most detailed) classification 
extract (587 x 455 pixels) of the core study area is shown in 
Figure 3a and 3b. Overall classification accuracies (and Kappa 
indices) using leave-one-out validation proved to be rather high 
at all levels of detail (level 1-3 > 80%; level 4 > 70%; Table 2). 
Accuracies drop the most from level 3 to 4. At level 3, all 
classes still consist of specific vegetation species or land cover 
types. At level 4 however, structural elements within one 
species are introduced. Confusion specifically occurs within (1) 
the age classes of Calluna heath (young, adult, old, and mixed); 
and (2) the permanent grassland types (species rich and species 
poor). Different strategies might be pursued to improve the 
accuracy of the structural quality classes (level 4), e.g. using 
spectral unmixing techniques to characterize the age classes, or 
exploiting spatial dependency information. This is however not 
the focus of this study, the reader is referred to Delalieux et al. 
(2010) and Thoonen et al. (2010), respectively.  
 

Level Number of 
classes 

Overall 
Acc. Kappa 

1 6 93 0.92 
2 11 88 0.85 
3 17 84 0.84 
4 24 74 0.81 

 
Table 2. Overall classification accuracies and Kappa indices of 

the land cover classifications at different levels of detail. 

3.2 Habitat patch map results 

Figure 3c shows the resulting habitat map for an extract of the 
study area. The habitat patch map consists of 10 classes relating 
to 6 Natura 2000 habitat types. The 2310/4030 class is included 
because of the high similarity between both habitat types in 
certain circumstances. Pixels belonging to this class can either 
be 2310 or 4030, but differentiation in the field was  not 
feasible. In Table 3, the confusion matrix is shown using the 
habitat data collected in 2009 in the field (ground reference data 
in the columns). Two accuracy interpretations are given for both 
the user’s (UA) and producer’s (PA) accuracy: (1) a strict 
accuracy number corresponding to the conventional 
interpretation (strict UA and PA); and (2) an accuracy number 
for which confusion between 2310 or 4030 on the one hand and 
2310/4030 on the other hand is not interpreted as an error (UA 
and PA). As confusion also often occurs in field interpretation 
of these habitats, the second accuracy assessment numbers are a 
better reflection of the true errors.  
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Figure 3. (a) True color extract of the study area; (b) Detailed (highest level) land cover classification; (c)  Habitat patch map;  
(d) Legend of the land cover classification (in b); (e) Legend of the habitat patch map (in c) 

Judging on the UA’s, the areas mapped as habitat type 2310 and 
2330 mainly do belong to these habitat types, although some 
confusion seems to exist between both, which is most likely due 
to semi-open areas of sand. An even higher confusion exists 
between habitat types 4010 and 4030. This is however mainly in 
patches which show very high encroachment by Molinia 
caerulea, and hence are also very similar. Part of the 4010 
habitat patches are classified as 31xx, which can be explained 
by the presence of small water surfaces in the wet heath habitat 
patches. Different approaches will be investigated to tackle 

these issues. While habitat types 2310 and 4030 both have 
Calluna vulgaris as the dominant species, only little confusion 
occurs between both, illustrating the potential of our 
methodology to deal with the low inter-variability between 
certain habitat types. In general, a significant amount (≈ 18%) 
of habitat patches still ends up as No Habitat while they in fact 
do belong to one of the habitat types. Future research will reveal 
if this can be resolved through adaptation of the habitat build-up 
rules, or by additional analysis of the No Habitat class.  

Table 3. Confusion matrix of the habitat patch map 
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4. CONCLUSIONS 

It is a well-known problem in the ecology - remote sensing 
community that detailed habitat patch object mapping is 
hampered by the high intra-variability of habitat patches, as well 
as by the low inter-variability between different habitat types. In 
this study however, we propose a methodology that makes use 
of high spatial, hyperspectral imagery to exploit these inherent 
characteristics in order to obtain detailed habitat patch maps. 
The results illustrate the potential of the methodology to deal 
with the inter- and intra-variability problems for heathland 
habitat areas, but certain specific issues remain for which 
further research is necessary. For example a significant amount 
of habitat (< 20%) remains unassigned. Our future research will 
therefore focus on the optimization of the proposed 
methodology by adaptation of the habitat reconstruction rules or 
other additional measures.  
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