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ABSTRACT: 

 

 

During the last several years, lidar has become a widely used technique for data collection from the earth surface and vegetation 

canopy being the large volume of high density lidar data the main drawback for its interpretation and analysis. In addition, parcel-

based segmentation of high-resolution remotely sensed data can provide convenient and useful spatial and structural information. In 

this paper, a methodology for semi-automatic updating of forest land use/land cover geo-spatial databases, using high spatial 

resolution imagery and lidar data, is presented. High spatial resolution multispectral imagery and low density lidar data (0.5 

points/m2) has been employed. Cartographic limits from a cadastre geospatial database have been used in order to segment the 

territory and create analysis objects. The objects are characterized using a set of descriptive features: spectral, structural, shape and 

texture features computed from the multispectral image. These features are combined with 3D features derived from lidar data: 

density profiles based indices and statistics from point cloud, intensity values and normalized digital surface models. The lidar 

descriptive features proposed provide a more intuitive interpretation of the vegetation canopy structure than the raw data. The 

classification is performed using the decision trees technique combined with the boosting multi-classifier. Classification assessment 

is done by using ground truth data. 

 

 

1. INTRODUCTION 

Remote sensing techniques are widely employed tools in forest 

management applications. Satellite optical imagery (St-Onge 

and Cavayas, 1997; Bruniquel-Pinel and Gastellu-Etchegorry, 

1998), Radar (Austin et al., 2003; Kimball et al., 2004) or Lidar 

data (Lefsky et al., 1999; Næsset 2002; Popescu et al., 2007) 

have been frequently employed to carry out these studies. 

Integration of different data source allows for a better earth 

surface description and facilitates classification processes. In 

order to improve these classifications, many authors have 

combined multispectral and lidar data in forest environments 

(Wallerman and Holmgren, 2007; Antonarakis et al., 2008; Ke 

et al., 2010), but also in agricultural (Bork and Su; 2007) and 

urban areas (Walter, 2005). 

 

During the last several years, lidar has become a popular 

technique for data collection from the earth surface and its 

elements, both anthropogenic and natural, such as the 

vegetation canopy. However, the large volume of high density 

lidar data makes difficult its interpretation and analysis. Object-

based analysis approaches can help to handle this limitation. 

Cartographical boundaries from cadastral or agricultural 

geospatial databases to segment the data can be used. 

 

The objective of this study is to define a comprehensive set of 

object-based descriptive features based on lidar data to describe 

and classify mixed agricultural and forest environments. Lidar 

and image data are combined by means of a parcel-based 

approach, using cartographic limits derived form a land 

use/land cover geospatial database. 

 

 

 

2. STUDY ZONE AND DATA 

The study has been performed in A Limia, a local administrative 

area (comarca) of Galicia, in northern Spain. This rural area 

presents large areas of agricultural crops, forest and shrublands. 

 

The images and lidar data employed were acquired from the 

Spanish National Plan of Aerial Orthophotography (PNOA). 

The images have a spatial resolution of 0.25 m/pixel and 4 

spectral bands: red, green, blue and near infrared. The images of 

A Limia were acquired between May and July of 2007. Lidar 

data were collected in October of 2009 with a nominal point 

cloud density of 0.5 points/m2. 

 

Cartographic boundaries to define the final objects (plots) were 

obtained from the Spanish Land Parcel Identification System 

(SIGPAC), a geospatial database oriented to agriculture 

management. In this cartography, plots represent a continuous 

area of land within a parcel for a single agricultural use (Mirón, 

2005). The total number of plots of the study area was 468,721. 

 

Field samples were collected at the same time than the images, 

and have square shape with side sizes of 350 or 500 meters, 

depending of the area 

 

 

3. METHODOLOGY 

A general description of the steps followed in the parcel-based 

classification methodological approach is done in this section, 

with references to documents containing a more exhaustive 

explanation. The main steps followed are: image and data pre-

processing, selection of training samples, descriptive feature 
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extraction from images and lidar data, classification and 

evaluation. 

 

3.1 Pre-processing 

High resolution images presented a high pre-processing degree: 

geometric rectification, panchromatic and multispectral fusion, 

mosaicking, and radiometric adjustments. Additionally, in order 

to facilitate the descriptive feature extraction process, images 

were resampled to 0.5 m/pixel using bilinear interpolation, since 

this spatial resolution was found adequate for this application. 

 

To obtain the physical heights of the elements present on the 

terrain (trees, building, etc.) a digital terrain model (DTM) is 

required (Figure 1.c). The normalized point cloud is computed 

as the difference of the lidar point cloud (Figure 1.a) and the 

DTM. The normalized digital surface model (nDSM) (Figure 

1.b) is computed by calculating the differences between the 

digital surface model (DSM) and the DTM.  

 

DTM computation involves the use of algorithms to eliminate 

points belonging to any object above ground surface, such as 

vegetation or buildings. Although there are several methods, a 

complete fully integrated process is difficult to achieve 

(Baltsavias 1999). In this study, an iterative process to select 

minimum elevations has been used. A similar methodology was 

applied by Popescu et al., (2002) or Clark et al. (2004) and is 

based on selecting points of minimum elevation in a series of 

progressively smaller analysis windows. First, an initial DTM is 

computed with the selected points. Then, new minimum 

elevations are chosen by using smaller analysis windows. Then 

these points are compared with the initial DTM. These points 

are accepted if the height difference is lower than a predefined 

height threshold. A comprehensive description of the DTM 

algorithm employed can be found in Estornell et al. (2009). 

 

Spatial objects were created using the SIGPAC plot boundaries. 

Objects are described as contiguous pixel groups with similar 

characteristics to the real world elements that are modelling. To 

avoid the inclusion of pixels not belonging to the plot, due to 

errors in the delineation of limits or due to positional defects, a 

morphological erosion filtering was applied to each object with 

a circular structuring element of 5 pixels diameter. Besides, in 

order to confer coherence to the automatic feature extraction 

process, that requires a minimum object surface, plots with a 

surface lower than 60 m2 were discarded. 

 

Five generic classes were defined (see Figure 2): Water layers, 

Buildings, Forest, Shrublands, and Arable and crop lands. The 

class Arable and crop lands was subdivided in three subclasses 

for classifying in order to differentiate the vegetation level of 

the crop at the moment of the image acquisition: without, sparse 

and dense vegetation. 

 

Most of training samples were selected from field databases. 

Since some sampling polygons did not coincide geometrically 

with the SIGPAC plots limits, the class assignation of samples 

was manually done. Additional samples were added by 

photointerpretation techniques in order to avoid the 

underrepresentation of some classes, especially Water layers, 

Forest and Shrub lands. As a result, a total of 1269 training 

samples were employed. 

 

3.2 Feature extraction 

Every plot was independently processed to extract descriptive 

features that characterize the current land use. Attending to he 

data source employed, the descriptive characteristics are divided 

in image and lidar features. Image features extracted in this 

study can be grouped in four categories: spectral, textural, 

structural and shape. Lidar features can be sub-divided 

attending to their nature as point cloud, nDSM, density profile, 

and intensity based. 

 

  
a. Original lidar point cloud b. Digital surface model 

  

c. Digital terrain model 
d. Zoomed detail of the 

normalized digital surface model 

 

Figure 1.  Models derived from lidar data. 

   
a. Water b. Building c. Forest 

   

d. Shrublands 
e. Arable and crop lands (with and without 

vegetation) 

 

Figure 2.  Examples of the classes defined in color infrared 

composition. 
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3.2.1 Image features  

Spectral features provide information about the intensity values 

of objects on the visible and near infrared regions of the 

spectrum, which depends on land coverage types, state of 

vegetation, soil composition, construction materials, etc. These 

features are particularly useful in the characterization of 

spectrally homogeneous objects, such as herbaceous crops or 

fallow fields. Mean and standard deviation were computed from 

the bands NIR, R, G and also from the Normalized Difference 

Vegetation Index (NDVI). 

 

Texture features inform about the spatial distribution of the 

intensity values in the image, being useful to quantify properties 

such as heterogeneity, contrast or uniformity related to each 

object (Ruiz et al., 2004). These properties are related to the 

land use/land cover inside an object. For each object a grey 

level co-occurence matrix (GLCM) characterizing the entire 

object was computed. From this matrix the features proposed by 

Haralick et al. (1973) were computed. Figure 3 shows some 

examples of GLCM computed for plots with different land uses. 

Texture information was completed with the values of kurtosis 

and skewness of the histogram, and the mean and the standard 

deviation of the edgeness factor for each plot (Sutton and Hall, 

1972). The edgeness factor represents the density of edges 

present in a neighbourhood. Texture descriptive features were 

derived from the red band, since it was the band showing a 

better contrast. 

 

Structural features describe the spatial arrangement of the 

objects in a plot. In this study, the structural features were 

extracted from the semivariogram graph computed for the NIR 

band. The semivariogram curve quantifies the spatial 

associations of the values of a variable, and measures the degree 

of spatial correlation between different pixels in an image. This 

is a particularly suitable tool in the characterization of regular 

patterns. For continuous variables the expression that describes 

the experimental semivariogram is: 
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where z(xi) = value of the variable in position xi. 

 N = number of pairs of data considered. 

 h = separation between elements in a given direction. 

 

The experimental semivariogram representing each object is 

obtained by computing the mean of the semivariograms 

calculated in six directions, ranging from 0º to 150º with a step 

of 30º. Afterwards, each semivariogram curve is filtered using a 

Gaussian filter with a stencil of 3 positions, in order to smooth 

its shape and to eliminate experimental fluctuations. Some 

semivariogram graphs examples are shown in Figure 3, where 

this is noticeable that when a periodic spatial behaviour is 

produced, as in the citrus groves plot, the graph present a cyclic 

curve, known as hole effect semivariogram (Pyrcz and Deutsch, 

2003). Several structural descriptive features are computed 

considering the singular points of the semivariogram, such as 

the first maximum, the first minimum, the second maximum, 

etc., being described in detail in Balaguer et al. (2010).  

 

 
Shape features inform about the complexity in the shape of the 

objects. They can contribute to differentiate polygons with 

specific shapes. Several standard features were extracted for 

each object: compactness, shape index, fractal dimension, area 

and perimeter. 

 

3.2.2 Lidar features  

Mean, standard deviation, maximum, skewness and kurtosis 

values have been computed for each plot from the normalized 

point cloud and from the nDSM (Figure 4). The descriptive 

features extracted from the nDSM provide information about 

the maximum height values, and their spatial distribution. 

 

The features computed from the normalized point cloud show 

further information about the internal structure of the vegetation 

of a plot. In order to complement this internal information the 

percentiles 25, 50 and 75 were also computed. General statistics 

and percentiles from the intensity values of the point cloud have 

been extracted. 

 

 

  
 

Figure 4.  Normalized point cloud (left) and normalized digital 

surface model (right) example of a forest plot. 

 

 

A deeper analysis of the normalized point cloud internal 

distribution structure can be done using the density profiles, 

which are the histograms of heights in each plot. Plots 

containing land uses, such as arable lands or irrigated crops 

(Figure 5c) present a very high percentage of points at the 

ground level, due to the absence of high vegetation (Figure 5d). 

Land uses characterized by the presence of dense vegetation, 

Plot GLCM Semivariogram 
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Figure 3.  Graphic representation of grey level co-occurrence 

matrices (origin is in the top left corner) and semivariogram 

graphs computed per-parcel for different land uses: forest, 

citrus groves and shrublands. 
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like shrublands (Figure 5b), present more values above the 

ground level. When a plot is characterized by containing trees, 

like forest or citrus groves (Figure 5a), the density profile 

normally presents a peaks related with the height of clusters of 

diverse tree species or trees with different ages. This graph can 

be modelled by computing information regarding to the number 

of peaks, their position (height) and the percentage of points 

laying in that height. 

 

 

   

a. Forest b. Shrublands c. Arable land 
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d. Density profiles 

 

Figure 5.  Density profiles for plots with different land uses: 

forest, shrublands and arable lands. 

 

 

3.2.3 Feature selection  

Due to the high number of features extracted from each object, 

some of them presented a high correlation, being redundant the 

information provided. The inclusion of these variables in the 

study could act as noise in the creation of the classification 

rules. The relations and redundancies existing between the 

descriptive features was initially analyzed by principal 

component analysis. Afterwards, linear descriptive discriminant 

analysis was applied in order to determine the significance of 

the features, removing from the study those with low 

significance level.  

 

3.3 Classification through decision trees 

Objects were classified by using decision trees. A decision tree 

is a set of organized conditions in a hierarchical structure, in 

such a way that the class assigned to an object can be 

determined following the conditions that are fulfilled from the 

tree roots (the initial data set) to any of its leaves (the assigned 

class). The algorithm employed in this study is the C5.0, which 

is the latest version of the algorithms ID3 and C4.5 developed 

by Quinlan (1993). This algorithm is the most widely used to 

deduce decision trees for classifying images (Zhang and Liu, 

2005). 

 

The process of building a decision tree begins by dividing the 

collection of training samples using mutually exclusive 

conditions. Each of these sample subgroups is iteratively 

divided until the newly generated subgroups are homogeneous, 

that is, all the elements in a subgroup belong to the same class. 

For each possible division of the initial data group, the impurity 

degree of the new subgroups is computed, and the condition 

which gives the lower impurity degree is chosen. This is iterated 

until the division of the original data into homogeneous 

subgroups is carried out by using the gain ratio as splitting 

criterion. This criterion employs information theory to estimate 

the size of the sub-trees for each possible attribute and selects 

the attribute with the largest expected information gain, that is, 

the attribute that will result in the smallest expected size of the 

sub-trees. 

 

Objects were classified using 10 decision trees, by means of the 

boosting multi-classifier method, which allows for increasing 

the accuracy of the classifier. The methodology followed by the 

boosting to build the multi-classifier is based on the assignment 

of weights to training samples. The higher the weight of a 

sample, the higher its influence in the classifier. After each tree 

construction, the vector of weights is adjusted to show the 

model performance. In this way, samples which are erroneously 

classified increase their weights, whereas the weights of 

correctly classified samples decrease. Thus, the model obtained 

in the next iteration will give more relevance to the samples 

erroneously classified in the previous step (Hernandez-Orallo et 

al., 2004). After the construction of the decision tree set, the 

class to each object is assigned considering the estimated error 

made in the construction of each tree. 

 

3.4 Evaluation  

Cross validation technique was used to assess the classification 

of plots. From the confusion matrix (Aronoff, 1982; Congalton, 

1991) the overall accuracy of the classification at plot level 

were computed. In addition the producer’s and user’s accuracies 

for each class, which respectively inform about the omission 

and commission errors, were calculated. 

 

 

4. RESULTS 

The results of the classification integrating image (spectral, 

texture, structural and shape) and lidar (intensity, nDSM, point 

cloud and density profiles) descriptive features are shown in 

Table 1. The results obtained improve the results that were 

attained in Hermosilla et al. (2010) using only image descriptive 

features (Table 2), where an overall accuracy of 91.4% was 

reached. The highest confusion was produced between the 

classes Arable and crop lands with Shrublands, and Shrublands 

with Forest. This confusion was produced due to the similarities 

between Shrublands and Forest, to the fuzzy border between 

both classes, and to the existence of mixed plots. 

 

The addition of the lidar descriptive produces a increase of the 

overall accuracy up to 93.2 %. The producer’s and user’s 

accuracies of the different classes are generally improved. The 

most remarkable increments are the attained by the classes 

Forest and Shrublands. 
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5. CONCLUSIONS 

This paper presents a methodology to combine imagery, 

cartography and lidar data to map forest areas. The proposed 3D 

features derived from lidar data complement the image-based 

features with non redundant information. A deeper analysis is 

necessary in order to determine the discriminant power of the 

features proposed. 

 

The classification results show that integration of different data 

sources produce an improvement of the accuracies thanks to the 

better description of the objects. 
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