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ABSTRACT:  

 

The availability of numerous spectral, spatial, and contextual features renders the selection of optimal features a time consuming and 

subjective process in object-based image analysis (OBIA). While several feature selection methods have been used in conjunction 

with OBIA, a robust comparison of the utility and efficiency of approaches could facilitate broader application. In this study, we 

tested three feature selection methods, 1) Jeffreys-Matusita distance (JM), 2) classification tree analysis (CTA), and 3) feature space 

optimization (FSO) for object-based classifications of rangeland vegetation with sub-decimeter digital aerial imagery in the arid 

southwestern U.S. We assessed strengths, weaknesses, and best uses for each approach using the criteria of ease of use, ability to 

rank and/or reduce input features, and classification accuracies. For the five sites tested, JM resulted in the highest overall 

classification accuracies for three sites, while CTA was highest for two sites. FSO resulted in the lowest accuracies. CTA offered 

ease of use and ability to rank and reduce features, while JM had the advantage of assessing class separation distances. FSO allowed 

for determining features relatively quickly, because it operates within the eCognition software used in this analysis. However, the 

feature ranking in FSO is unclear and accuracies were relatively low. While all methods offered an objective approach for 

determining suitable features for classifications of sub-decimeter resolution aerial imagery, we concluded that CTA was best suited 

for this particular dataset. We explore the limitations, assumptions, and appropriate uses for this and other datasets.  

 

 

1. INTRODUCTION 

 

The selection of appropriate spectral bands or image features is 

a crucial step in any image analysis process. Using a set of op-

timal features ensures that the classes in question are discrimi-

nated effectively and with sufficiently high accuracy, and that 

the dimensionality is reduced for efficient use of training sam-

ples (Jensen, 2005). In object-based image analysis (OBIA), the 

determination of optimal features can be a time consuming 

process due to the availability of numerous spectral, spatial, and 

contextual features. Feature selection techniques range from 

graphic methods to statistical approaches involving class sepa-

ration distances. Several feature selection methods have been 

used in conjunction with OBIA. Herold et al. (2003) and Car-

leer and Wolfe (2006) used the Bhattacharyya distance, while 

Nussbaum et al. (2006) and Marpu et al. (2006) employed the 

Jeffreys-Matusita distance for feature selection. Johansen et al.  

(2009) evaluated feature space plots, box plots, band histo-

grams, and feature space optimization. Classification tree anal-

ysis for selection of optimal features was successfully applied 

by Chubey et al., (2006), Yu et al., (2006), Laliberte et al. 

(2007), and Addink et al. (2010).  

 

The above mentioned studies all used high resolution satellite 

images (QuickBird, Ikonos, SPOT) or aerial photography (0.3-

1.25m resolution). In recent years, the use of digital mapping 

cameras has greatly increased, and examples for use of these 

images include mapping benthic habitats (Green and Lopez, 

2007), land use/land cover mapping (Rosso et al. 2008), and 

border monitoring and change detection (Coulter and Stow, 

2008). Digital airborne imagery can be acquired at sub-

decimeter resolution and exhibits great potential for mapping 

rangeland vegetation mapping (Laliberte et al., in press) despite 

multiple challenges, such as high spatial frequency, the effect 

of shadows, viewing geometry, illumination, and the necessity 

for mosaicking multiple images for analysis. Optimal features 

for classification may be scale dependent, and features used in 

the analysis of coarser resolution imagery may not be applica-

ble to finer resolution data. Determination of appropriate fea-

tures for very high resolution imagery, and a robust comparison 

of the utility and efficiency of various feature selection methods 

could facilitate broader use of sub-decimeter aerial imagery for 

vegetation mapping.  

 

The objectives of this study were to 1) determine the optimal 

features for fine-scale vegetation mapping, and 2) evaluate 

three feature selection methods (i.e., Jeffreys-Matusita distance, 

classification tree analysis, and feature space optimization), in 

the context of object-based classification of rangeland vegeta-

tion with digital aerial imagery with a 6 cm ground resolved 

distance. Evaluation criteria for the feature selection methods 

included efficiency and ease of use, ability to rank and reduce 

features, and classification accuracies.  

 

 

2. METHODS 

Study area and images 

The study sites were located at the Jornada Experimental Range 

and the Chihuahuan Desert Rangeland Research Center in 

southwestern New Mexico, USA (32º34’11”W, 106º49’44”N). 

Average elevation is about 1200 m, and rainfall amounts and 

distribution are highly variable, with more than 50% of the 

mean annual precipitation of 241 mm occurring during July, 

August, and September. Much of the historic semi-desert grass-
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land has experienced marked increase in shrub abundance and 

distribution, although some grass-dominated areas remain. For 

this study, imagery was acquired over five 150 m x 150 m plots 

in five vegetation communities, three shrub-dominated: creo-

sote (CGRAV), tarbush (TEAST), mesquite (MWELL), and 

three grass-dominated: grassland (GIBPE), and playa (PCOLL). 

 

The images were acquired on 13 September, 2009 with an Ul-

traCamL large format digital mapping camera at a flying height 

of approximately 480 m above ground. The camera acquires 

multispectral data in the red (580-700 nm), green (480-630 nm), 

blue (410-570 nm), and near infrared (690-1000 nm) bands. 

Five overlapping images were acquired over each site, orthorec-

tified using interior and exterior orientation values, and mo-

saicked using Leica Photogrammetric Suite (Erdas, 2009). The 

image mosaic (6 cm ground resolved distance) was subsequent-

ly co-registered to an orthorectified QuickBird image using Er-

das Imagine AutoSync™ with an average of 230 automatically 

generated tie points and an average RMS error of 5 cm. Images 

were clipped to the plot boundaries for further analysis.  

 

Field Data 

At each of the five plots, training and test samples for the do-

minant vegetation species were collected by digitizing vegeta-

tion boundaries over the displayed image using ArcPad on a 

tablet PC. This method eliminated potential errors associated 

with GPS data collection due to the discrepancy between image 

resolution and GPS error. On average, 520 species-level sam-

ples were collected per plot (at least 20 samples per class), and 

classes/plot ranged from 6 to 10. Half of the samples were used 

as training sites, and half were retained for accuracy assess-

ment.  

 

Image Analysis 

We used eCognition Developer 8 (Definiens, 2009) for the ob-

ject-based image analysis. The images were segmented at two 

scales, a fine scale multiresolution segmentation with scale pa-

rameter 100, and a coarser scale spectral difference segmenta-

tion with a maximum spectral difference of 1500. All bands 

were weighted equally for the segmentation; color/shape was 

set to 0.9/0.1, and smoothness/compactness was set to 0.5/0.5. 

All classifications were done at the coarser segmentation scale. 

A rule-based approach was used to classify shadow, bare 

ground, and vegetation, followed by a nearest-neighbor classi-

fication for detailed species-level classes using training sam-

ples. We tested the three feature selection methods for the spe-

cies-level classification only.  

 

We started the analysis with 31 spectral, spatial, and texture 

features. Spearman’s rank correlation analysis was used to 

eliminate features with correlation coefficients >0.9 to reduce 

data dimensionality. As a result, 12-18 features remained per 

plot (Table 1). Three feature selection methods were tested, 1) 

Jeffreys-Matusita distance (JM), 2), classification tree analysis 

(CTA), and 3) feature space optimization (FSO). Inputs for all 

three methods consisted of the feature values or object statistics 

of the training objects for each class. For JM, we used the 

SEaTH tool (Nussbaum et al., 2006) due to its compatibility 

with eCognition’s exported object statistics. SEaTH calculates 

the class separability for every feature and two-class combina-

tion and outputs individual text files for each two-class compar-

ison. The data were compiled in Excel to determine the largest 

average JM distance for every possible 4-10 feature combina-

tion. We then selected the feature combination that resulted in 

the largest JM distance for the least separable pair of classes. 

For CTA, we used CART® (Salford Systems) which produces 

a decision tree and optimum features that are ranked based on 

variable importance scores of the primary splitters in the tree. 

FSO is a tool available in eCognition and it calculates an opti-

mum feature combination based on class samples. FSO eva-

luates the Euclidean distance in feature space between the sam-

ples of all classes and selects a feature combination resulting in 

the best class separation distance, which is defined as the larg-

est of the minimum distances between the least separable 

classes. We assessed classification accuracies for the species-

level classes only by creating an error matrix to determine us-

ers, producers, and overall classification accuracies, and Kappa 

statistics (Congalton and Green, 1999). Statistical differences 

between classifications were assessed with McNemar’s test, a 

non-parametric test of contingency tables (Foody, 2004).  

 

 

3. RESULTS 

3.1 Feature Selection   

 

The features selected with the three methods tested are shown 

in Table 1. The lowest number of features was selected by CTA 

in three of the five plots. FSO consistently selected the largest 

number of features, in two plots twice as many features as JM, 

and in two plots three times as many features as CART, one 

noted exception was with the CGRAV plot. We observed more 

consistency in feature selection between JM and CTA than be-

tween FSO and either of the other two methods. For example, 

in CGRAV, FSO did not select NDVI or Mean NIR, while both 

features were selected by JM and CTA. A similar observation 

was apparent with the ranking of features, which was similar 

for JM and CTA, and less similar for FSO compared to JM or 

CTA. For JM, the ranking is based on the average JM distance 

of all two-class comparisons for a particular feature space. For 

CTA, the ranking was obtained by using the variable impor-

tance scores of the primary splitters in the decision tree. The 

FSO ranking is based on the order of selection within the FSO 

tool. Overall, spectral features were more likely to be selected 

than spatial or texture features, and on average the highest rank-

ing features were Mean Red, NDVI, and Ratio Red. 

 

3.2 Classification Accuracy   

 

The highest overall classification accuracies and Kappa values 

were obtained using JM for three plots, followed by CTA for 

two plots. Classifications with features from FSO had the low-

est overall accuracies and Kappa values (Figure 1). P-values 

from McNemar’s tests for all two-method comparisons 

were<0.001 except for the CTA vs. FSO comparisons in 

MWELL (p=0.052) and GIBPE (p=0.029). In general, Kappa 

values for individual classes showed more consistency across 

methods if the class was highly separable from other classes 

(based on the JM distances). Conversely, less separable classes 

had greater variation in Kappa values for the three methods. An 

example is shown in Figure 2 with the plot MWELL. The spe-

cies ATCA (Fourwing saltbush) and YUEL (Yucca), which 

were confused with each other, showed a large variation in 

Kappa values for the methods, while highly separable species 

such as GUSA (Broom snakeweed) and PRGL (Honey mes-

quite) had comparable Kappa values for all methods. However, 

there were exceptions to this observation related to the size 

class of certain shrubs. While large PRGL (avg. diame-

ter>0.6m) were highly separable from other species (as in 
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Features  

NDVI 2 2  1 1 7 3 2 11 2  13 2 3 14 

Mean Blue                

Mean Green    6 5 12          

Mean NIR 4 4   3  6  16 6 3 10 6  13 

Mean Red 1 1 6 3 8 10 2 1 3 4 1 6 5 1  

Max difference     6 13 8  13 7 4 15 7  6 

Standard deviation Blue                

Standard deviation Green      1          

Standard deviation NIR   4   4   6   1   2 

Standard deviation Red  6 2      15   5   9 

Ratio Blue 3 5    2 7 5 1   4    

Ratio Green    7 2 5  4 7   11 3  1 

Ratio NIR       4  8       

Ratio Red       5  2 1 2  1 2 8 

Mean Diff. to neighb. Blue             8 4 5 

Mean Diff. to neighb. Green    5 9 6          

Mean Diff. to neighb. NIR   1          9  11 

Mean Diff. to neighb. Red   7      10  5 8    

Area    2 4  1 3 5 3 6  4   

Compactness            14   7 

Density   3   8   4   2   3 

Roundness     7 9   9       

Shape index                

GLCM Homogeneity      11   14   7   12 

GLCM Contrast            9    

GLCM Dissimilarity         12      10 

GLCM Entropy 7  5            15 

GLCM StdDev                

GLCM Correlation      3      3   4 

GLCM Ang. 2nd moment 5 7        5  12 10   

GLCM Mean 6 3  4            

Total uncorrelated 12 16 17 17 18 

Total selected 7 7 7 7 9 13 8 5 16 7 6 15 10 4 15 

 

Table 1. Features selected from 31 input features using three feature selection methods (JM, CTA, FSO) for five plots. Numbers in 

columns represent feature ranks for JM by largest JM distance, for CTA by primary splitter in decision tree, and for FSO by order of 

selection in the FSO tool. Uncorrelated features per plot have correlation coefficients <0.9. 
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Figure 1. Overall classification accuracies (left) and Kappa indices (right) for classifications of five plots with three feature selection 

methods (JM, CTA, FSO). P-values from McNemar’s tests for all two-method comparisons were <0.001 except for the CTA vs. FSO 

comparisons in MWELL (p=0.052) and GIBPE (p=0.029).  
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Figure 2. Kappa indices for individual classes (four-letter sym-

bols) in plot MWELL for three classification methods (JM, 

CTA, FSO).  

 

 

plot MWELL), small PRGL (avg. diameter<0.6m) were often 

confused with other small shrubs due to their higher reflec-

tance. This resulted in Kappa values around 0.5 for PRGL in 

the plot CGRAV (not shown). An example classification of plot 

TEAST with features determined with the CTA method shows 

the fine detail acquired with this imagery (Figure 3).   

 

3.3 Processing Time   

 

The three methods for feature selection resulted in a range in 

processing times due to the different steps required for each 

method. In all plots, CTA was faster than JM, which was faster 

than FSO for obtaining an optimum feature combination. How-

ever, FSO was entirely dependent on how many texture features 

were included, because texture determination is CPU demand-

ing. In this analysis, FSO chose between one and four texture 

features for each plot, slowing down the operation. For exam-

ple, feature space optimization took on average 10 seconds for a 

test using 10 features without texture. With four texture fea-

tures, this task required up to 2 hours. If no texture features are 

included, FSO has the potential to be the fastest feature selec-

tion method.  

 

Both CTA and JM required exporting the object statistics from 

eCognition and the use of another program for determining fea-

ture parameters. CTA was more time efficient, because 

CART® processing times from import to outputs of results re-

quired only seconds. Feature rankings based on variable impor-

tance scores of the primary splitters in the tree were easy to in-

terpret. JM required the most data manipulation, because 

several steps were required for analyzing object statistics using 

the SEaTH tool, compiling individual output files for each two-

class combination (up to 45), and obtaining average separation 

distances for every possible 4-10 feature combination before 

determining the optimum combination for the least separable 

pair of classes. Classification times in eCognition were also 

highly dependent on the number of texture features included. 

Plots without texture features were classified in minutes, while 

plots with four texture features took up to 9 hours to classify.  

 

4. DISCUSSION 

In order to assess the suitability of a particular feature selection 

approach, classification accuracy is an important criteria, be-

cause ultimately the analyst desires a result with as high accu-

racy as possible. However, other criteria have to be considered 

as well. If multiple images have to be analyzed, ease of use,   

 
 

Figure 3. UltraCam X image with 6 cm ground resolved dis-

tance (top) and classification (bottom) for a portion of plot 

TEAST. Classification was performed using CTA. FLCE, 

ATCA, and LYBE are shrubs (four-letter symbols), ZIAC is a 

forb, and the remaining classes are grasses.  

 

 

efficiency, and processing times are equally important, and an 

efficient workflow may be preferable to higher overall accura-

cy, especially if the difference in accuracy consists of a few 

percentage points. The ability to clearly interpret the results of a 

feature selection method also has to be taken into consideration. 

Finally, a robust feature selection technique has to be capable 

of ranking and reducing a potentially large number of input fea-

tures. In most situations, training samples are costly and there-

fore limited. Using a reduced number of features for a given set 

of training samples reduces dimensionality and prevents what is 

known as the Hughes phenomenon, the deterioration of classifi-
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cation accuracy due to addition of unnecessary features (Kim 

and Landgrebe, 1991).  

 

Each feature selection method had advantages and disadvantag-

es, and while we determined that CTA was best suited given the 

mapping objectives, image type and resolution in this study, we 

acknowledge that either of the other methods may be preferable 

in different studies. CTA proved to be an excellent feature re-

duction and ranking tool, it required few steps, and the results 

were easy to interpret. Moreover, a decision tree is also non-

parametric. While in some datasets the assumption of normality 

underlying the JM distance may not be met due to limited sam-

ple sizes, this method has the advantage that class separation 

distances for specific classes can be determined. In this study, 

class separation distances offered new insights into the influ-

ence of size classes of certain species. While larger mesquite 

shrubs were clearly separable from other shrubs, small mes-

quites had a tendency to be confused with other shrubs. In 

terms of efficiency, if many classes and/or many features are 

involved, JM can be time-consuming, because the analysis is 

essentially based on multiple two-class comparisons.  

 

FSO was the lowest ranking method in this study. While it can 

be applied directly in eCognition and can potentially be the 

fastest approach without texture features, it consistently se-

lected the largest number of features of all three methods. In 

addition, the feature selection approach appeared to be a “black 

box”, and it provided the lowest classification accuracies. How-

ever, FSO does provide class separation distances based on the 

Euclidean distance in feature space between the samples of all 

classes. Although we did not select features based on class se-

paration distances from FSO, we compared the separation dis-

tances obtained with FSO and JM for all two-class combina-

tions for each plot. The correlations for the two measures were 

relatively high and all were significant at the 0.05 alpha level 

(Table 2). While the maximum separation distances from FSO 

varied greatly from plot to plot, JM distances have the advan-

tage of being scaled from 0-2, which makes is convenient for 

comparing separability of the same classes in different plots.  

  

Plot 
Correlation 

coefficient 
p-value n 

CGRAV 0.88 <0.001 45 

MWELL 0.81 <0.001 15 

TEAST 0.82 <0.001 36 

GIBPE 0.41 0.03 28 

PCOLL 0.76 <0.001 21 

 

Table 2. Correlations between Jeffreys-Matusita distances                  

and class separation distances obtained with FSO tool for all 

two-class comparison for five plots. 

 

The strengths, weaknesses, and suggested best uses for the three 

feature selection methods demonstrate that classification objec-

tives and logistical constraints are best considered a priori (Ta-

ble 3). In this study, we only tested nearest-neighbor classifica-

tion using samples. However, two of the methods, CTA and 

JM, also provide threshold values that can be used for rule-

based classification. The SEaTH tool used for determination of 

the JM distance provides threshold values for separating only 

two classes, while CTA outputs thresholds based on the entire 

classification tree.  

 

 

 

  JM  CTA FSO 

Strengths 

1) JM distances and rules for 2-

class comparisons, 2) compatible 

with eCognition export 

1) feature reduction and ranking,  

2) non-parametric, 3) can obtain 

features or specific rules, 4) fast 

analysis 

1) feature reduction within eCogni-

tion, 2) class separation distances, 

3) fast without texture features 

Weaknesses 

1) no initial feature reduction, 2) 

requires multiple steps for feature 

selection, 3) assumes normality 

1) no class separation distances,    

2) potential for overfitting decision 

tree  

1) “black box” feature selection 

approach, 2) unclear feature rank-

ing, 3) no rules 

Best uses 

1) feature selection for NN or rule-

based classification when separa-

tion distances are needed, 2) with 

limited number of classes and fea-

tures 

1) feature reduction and ranking for 

NN or rule-based classification,    

2) with many classes and/or fea-

tures, 3) features with non-normal 

distributions 

1) feature reduction for NN classi-

fication 

 

Table 3. Strengths and weaknesses of, and best uses for three feature selection methods for object-based image analysis of very high 

resolution digital aerial photography. The feature selection methods are Jeffreys-Matusita distance (JM), applied using the SEaTH 

tool, classification tree analysis (CTA), and feature space optimization (FSO). 

 

 

 

5. CONCLUSIONS 

In this study, we assessed three feature selection methods for 

object-based classification of rangeland vegetation using sub-

decimeter resolution digital aerial imagery. All methods offered 

an objective approach for feature selection. JM resulted in the 

highest classification accuracies for three of the five sites; how-

ever, CTA was deemed to be the best method for this particular 

set of imagery, because of the efficient workflow, the ability to 

both rank and significantly reduce input features, and the lack 

of parametric assumptions for normality. Even though CTA 

ranked second in terms of accuracy, we determined that it was 

the best method if multiple images were to be analyzed. FSO 

was ranked third based on feature reduction capability, the 

“black box” nature, and lowest accuracies. JM is an attractive 

method if class separation distances are of interest. FSO also 

provided class separation distance, but they are not scaled for 

easy comparisons. Further studies will investigate the validity 

of these findings when the methods are applied to classifica-

tions of larger areas.  
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