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ABSTRACT:

A method is proposed for building and road detecom VHR multispectral aerial images of dense urheras.
Spatial and spectral features of segmented areaslassified using a 3-class SVM integrating songiari and
contextual information to handle unclassified paseand conflicts. Geometrical object features additional
information improve the classification accuracytire difficult case where many building roofs areygtike the
roads and have similar geometry. Also, road netwedularization is suggested to improve the clasgibn

accuracy.

1. INTRODUCTION

Classification accuracy on remote sensing images\p®rtant
for development planning, emergency response ¢ sarvey.
A current challenge is to provide both accurate antbmatic
classification algorithms. We aim at extracting deaand
buildings in urban area aerial images. Our imagesta very
high spatial resolution (VHR) of 0.5m per pixeldamve three
optic spectral bands (RGB multispectral channels).
Classification applications in remote sensing Uguwabrk at the
pixel level, using only spectral information. Alsextracted
pixel spectral features are usually classified wtite Gaussian
maximum likelihood (ML) supervised classifier (BD6).
However, VHR urban images contain a significant antoof
spatial information, which should be used to ma&ssjble the
precise identification of small structures such hamises or
narrow roads. Contextual information can be usednbgns of
Markov random fields (MRF) (Ja, 02), morphologipabfiles
(MP) (Pa, 05; Fa, 08; Tu, 09) or image segmentafia 09;
Li, 04; Ta, 10; Si, 10) approaches.

The use of image segmentation approaches overdhmesale
selection problem of the MPs methods (Ta, 10). @agto use
segmentation consists in merging the segmentatiap with
the results of a classical pixel wise spectral sifecmtion by
assigning to a segmented area the predominant piask
within it (majority vote) (Ta, 09, Ta, 10). Othemwvks suggest
computing spectral pattern over segmented area (0gpand
then (object) patterns are classified.

In the part 2 of this paper the two previous methoding
segmentation are compared with the classical piied spectral
classification procedure, in the case where eadhadeuses a
3-class SVM classifier handled by the “one-agaait-
strategy. Unfortunately, due to the presence ddsclaverlaps,
problems of bad detection for the class “buildirsgid of false
alarm for the class “road” occur. Because we arhéncontext
of dense urban VHR images with class “road”, “bmtdd and
“other”, class geometries are more characteristicd a
discriminative with respect to each other than witbst of the
previous works. Thus a solution is presented ih a&onsisting

The MPs techniques are fast and intensively used ifo perform a better exploitation of the availablpatial

hyperspectral imaging. In that case, a pixel isrofiescribed by

both a spectral and a geometrical pattern (the M#sich can
be concatenated
classification (Fa, 08). Geometrical features galherinvalid
the Gaussian assumption for class distributions
nonparametric supervised classifiers such as decisees, K-
neirest-neighbours (Bi, 06), neural networks (F)& Be, 99)
or kernel methods such as Support Vector MachiB4vis)
(Bi, 06; Fa, 08; Tu, 09) are generally used. Withitrepectral
images, SVMs often provide a better classificatamturacy
than other methods (Me, 04; Fo, 04), because thaglh small
ratio between the number of available training desyand the
number of features. However, SVMs were designedaive
binary classification problems, and multi-class S3/Mre
generally handled by the “one-against-all” or tlmé-against-
one” strategy (Bi, 06; Me, 04).

information (provided by segmentation) by computinigject
geometrical features over segmented areas, anccthssifying

to form a composite pattern beforghe composite spectral-spatial (object) patterngprviously

with a 3-class SVM classifier. The fact to concatenspectral

an@nd spatial patterns improves class separabilitpwéver,

another limitation is that the final class attribatis performed
by applying the “winner-take-all” rule to the bigalSVM
classifier discriminant function values (Me, 04kchuse this
information can suffer from a lack of reliabilityn order to
overcome this problem, a solution using contextui@rmation
and a priori knowledge is suggested in part 3 tdleconflicts
and non-assigned patterns. In part 4, a road nktrefinement
is suggested, filling the gaps in the roads andaoshiog road
borders, on the basis of straight segment detedtart 5 is the
conclusion.



2. TRADITIONNAL PIXEL AND OBJECT
CLASSIFICATIONSWITH SVM

a 2-class training set is built by opposing thenelets of the
training set of the considered class to the elesnehthe two
other classes. Second, the two SVM parameter vdlaes to

Among the numerous existing supervised nonparametribe set. We optimize them using cross-validationmizyimizing

classification methods, the compact kernel SVM sifees was
chosen because of its superiority in terms of diaason
accuracy in the context of remote sensing imagesjta ability
to handle the curse of dimensionality (Bi, 06; B8; Me, 04;
Fo, 04; Si, 10). The Gaussian kernel provides often best
results, and is used in this paper. In this cabe, $VM
algorithm has two parameters (for each class):
misclassification penalty term and the Gaussiarthwid

2.1 Classification schemes

In this part, three SVM-based classification methoare
explained. These methods are already used intdratlire, and
are the followings:

1- The classical pixel wise spectral classificatigith SVM. A
pixel is first described by the 3-d RGB colour w¢tand then
patterns are classified with SVM.

2- The object spectral classification with SVM. égsmentation
algorithm is applied first to the image; second 8d RGB
mean colour vector describes segmented areas, laindl t
(object) patterns are classified with SVM.

3- The resulting pixel classification map of metHo&é merged
with a segmentation map established independeritlye
predominant pixel class within a segmented aresssgned to
the whole area (majority vote).

Note that methods 2 and 3 exploit geometrical imftion
thanks to segmentation. In this paper,
segmentation algorithm is used (Ch, 95; Co, 0218}, Details
about the mean shift can be found in previous w¢8is 10),
and a result is shown on figure 1.
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Figure 1. Mean shift segmentation results on ﬁwam colour
VHR aerial image.

In this paper we focus on building and road exioactin order
to achieve comparisons, both pixel and object S\tAésifiers
use the same 3-class training set, composed of Handred
“building”, four hundred “road” and two hundred Har”
elements. It was built at the object level by maiyuassigning
to a class some mean shift areas situated outdige
classification area, and computing over each ore3td mean
colour vector. Because the SVM algorithm is a 3sla
classifier, our 3-classes are handled by the “ayerst-all”
multiclass SVM strategy. It consists in using thbéary SVM
classifiers independently, one for each class.ecoh class, first

the false classification rate over a 2D-grid of témusand
couples of values for the two tuned parameterss $icostly
but ensures to find the global minimum. In ordeh&ve a very
high precision, this procedure is repeated threediin a coarse
to fine scheme. Finally, the optimal values areduselearn the
classifier on the entire 2-class training set. Whamew pattern

thex is presented, each binary classifier first complite linear

discriminant function value (the SVM decision boandis a
hyperplane linear model in the final feature spéBe 06),
which is a signed measure of the distancexofvith respect to
the hyperplaned(x) . Second, the final decision (class label) is
established by looking to which side of the hypamngl x
belongs; i.e. ifd(x)>0, x is attributed to the considered
class, elsex is not attributed to the class. Finally, whenth#
patterns are classified, we have three binary-&abeinages
(independent binary SVM classifier final decisignepe for
each class. There are eight possibilities to haraienprising
four conflict situations (multiple assignments) atite non-
attribution case. A 3-class classifier is generalijit by taking
the final decision with the “winner-take-all’ rulen the
discriminant function values of the binary clagsii. This
strategy enables to handle easily and automaticatylicts and
unclassified patterns.

2.2 Experimental results

The three classification methods of part 2.1 haaenkevaluated

the mearft shion the part of a multispectral VHR aerial imagedefse urban

area of figure 2.a. This image of Brussels cenBelgium)
contains 2393x1804 pixels, with a spatial resolutsd 0.5m per
pixel, and is composed of three optic spectral bafRIGB).
Figure 2.b is the ground truth built by visual mpestation. The
red on the ground truth corresponds to areas wheveas
visually difficult to discriminate roads and buitgdjs, and thus
road or building detections on these areas areidems as
exact. The classification maps obtained with thhreghmethods
of part 2.1 are shown on figure 3. Some correspandi
descriptive measures of classification accuradiegeported in
table 1. They were computed from the 3x3 confusiarix (in
terms of pixels) between the considered 3-classsifiad image
(examples are on figure 3) and the 3-class growtth image
(figure 2.b).

Figure 3.a shows that the pixel wise spectral dlaaton
manifests a salt-and-paper appearance, as it alyshe case
when only spectral information is used. It is cansken in table
1 that with this method, all classes suffer frorhaal detection
problem (especially the “building” and “other” ct&s). In
addition, a false alarm problem occurs for the<lasher”, and
especially for the class “road”. The method 2 pdesi also poor
results, with important bad detection problem fa tbuilding”
and “other” classes, and false alarm problem fa tload”
class.



Figure 2. Brussels centre: (a) pa}t of a colourahénage with
a spatial resolution of 0.5m, (b) ground truth.
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Figure 3. 3-class SVM classification map obtaingd(b) pixel
spectral classification (method 1), (b) object ¢m@c
classification (method 2), (c) majority vote oveeas (method
3). Classification accuracies are reported in table

Pixel Object SVM +
spectral spectral majority vote
SVM SVM over area
classification | classification| (method 3)
(method 1) (method 2)
Overall 0.56 0.54 0.60
accuracy
Producer’s 0.66 0.92 0.87
accuracy
road
Producer’s 0.55 0.43 0.55
accuracy
building
Producer’s 0.50 0.48 0.50
accuracy
other
User's 0.30 0.31 0.34
accuracy
road
User’s 0.78 0.88 0.85
accuracy
building
User's 0.65 0.82 0.81
accuracy
other

Table 1. 3-class classification accuracies (ircgetage). The
SVM final decisions are taken with the “winner-tekl€ rule
on the discriminant function values of the binadggsifiers.

A significant improvement is obtained with the nath3.
However, results are still not satisfactory becatise overall
accuracy is only equal to 60%. Also, the problenfisbad
detection for the “building” and “other” classesdanf false
alarm for the “road” class remain. These problemes raainly
due to the fact that in our case many building saofd “other”
areas have similar grey spectral signature as poeals (class
overlaps). In our context (urban VHR images, witkss “road”
and “building”), a solution to improve the classpagability
consists in exploiting more deeply the availablergetrical
information provided by segmentation. This can keefqymed
by describing segmented areas with geometricalifeatand is
the topic of part 3.

3. SPECTRAL-SPATIAL OBJECT CLASSIFICATION
WITH SVM

In order to overcome the class overlap problents®imethods
of part 2, we suggest computing some spatial olfgatures.
We consider the method 2 of part 2.1, and in aalditiith the
mean colour vector we compute the area and thenemity of
the segmented area. The eccentricity computatiatessribed
in (Si, 10). Finally, the 3-class SVM classifierevates now on
5-d composite spectral-spatial object patternss Fhiggested
method is called the method 4. The classificati@psnobtained
with it is on figure 4.b, and some correspondingcdigtive
measures of classification accuracies are reparteable 2.

It can be seen in table 2 that the overall accucdthie method
4 is of 6% upper than the one of the method 3 (wfgche best
among the previous methods, see table 1). In ftu,
“building” bad detection and the “road” false alaproblems
are still present but significantly attenuatedcan be noticed
however that the “other” bad detection problem rema
unchanged; this is because the “other” class haspaific
shape and size (geometrical features are not usefuthis



class). This significant improvement with respectprevious
methods shows that the concatenation of the spguatéern
with area and eccentricity features improves ciaparability in
our context. However, the problems are not totalycelled
and that shows the presence of remaining classlapeerlt
seems to be difficult to solve entirely this prabldecause in
our context many building roofs and “other” areasé both
similar grey spectral signature and rectangulanggoy as road
objects.

Up to now, the 3-class SVM final class attributibas been
performed by applying the “winner-take-all” rule tbe three
binary classifier discriminant function values. Fhis a
straightforward procedure enabling to handle easdpflicts
between classes (multiple assignments) and unfitabksi
patterns. A conflict occurs when more than one ridrsnant
function values are positives, and a non-assignneecurs
when all the three discriminant function values aegatives.
Such areas can be observed on figure 4.a, whiclthes
superimposition of the three binary-labelled imagdsained
with the method 4. It can be noticed that with xample the
conflict between “road” and “building” classes fied) is more
present than the other types of conflicts. Alsa;lassified areas
(in white) are relatively numerous. Discriminantnftion
information can suffer from a lack of reliabilitifor instance, if
all the discriminant function values are negativesen the
“winner” is on the bad side of the hyperplane. Alsothis case
the “winner” is the closest from the hyperplane &ne closer
x is from the hyperplane, the less reliable the sleniis. An
idea to overcome this limitation is to use some itamithl
information in the final class attribution proce§s case of
conflicts or non-assignments), in addition to thiscdminant
function values. In our context, we can exploit soanpriori
knowledge and contextual information. Because wsdiad
areas are often larges, it is difficult to estdblisy visual
observation some pertinent contextual rules to kearidem.
However, some a priori knowledge can be used. &, flhe
detected “building” and “other” bad detection atwbad” false
alarm phenomenon enable to assume that an unidsaita is
probably not a “road” object, but rather a “builgiror “other”
one. This assumption has been confirmed by visbs¢iwation.
Thus with unclassified areas we suggest considesinly the
discriminant function values of class “building” darfother”
with the “winner-take-all” rule, preventing the ‘ad” class
attribution. Now conflict areas are investigatedthva focus on
the road-building one because it is the single ¢significant.
In that case, applying the “winner-take-all” rulae the three
discriminant function values is theoretically sbi@a However,
visual observation has shown that contextual infgrom can be
advantageously used. For example, if buildings r@ads)
mainly surround a conflict area, most of the titnis i building

still present but attenuated. This significant iommment with
respect to method 4 shows the importance of aduditio
information.
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Figure 4. (a) superlmposmon of the tree SVM bynelassifier
final decisions. 3-class SVM classification mapaiféd by: (b)
object spectral-spatial classification (method(4),method 4 +
a priori knowledge and contextual information (nu&th5).
Classification accuracies are reported in table 2.

(or a road). These contextual rules have showederbe
efficiency than the “winner-take-all” rule on disoinant
function values. The drawback is that contextuésican be
difficult to establish in case of more classes @eéned, and
depend on image content. It can also be noted dbatext
exploitation is a post-classification processingpst This
suggested method handling non-assignments with iari pr
knowledge and conflicts with contextual informatiencalled
the method 5. Its classification map is on figure, 4nd the
corresponding classification accuracies are iretabl

It can be seen that the overall accuracy is of ®euthan the
one of the method 4, and the most significant imenoent is
for the class “building” (producer’'s accuracy of%pB The
“other” bad detection and the “road” false alarnotpems are

Object spectral- | method 4 + a priori
spatial SVM knowledge and
classification with contextual
“winner-take-all” information
(method 4) (method 5)
Overall accuracy 0.66 0.69
Producer’s 0.85 0.79
accuracy road
Producer’s 0.66 0.73
accuracy building
Producer’s 0.50 0.54
accuracy other
User’s accuracy 0.41 0.46
road
User’s accuracy 0.82 0.80
building
User’s accuracy 0.82 0.79
other

Table 2. 3-class SVM classification accuraciepéncentage).



4. POST-CLASSIFICATION REGULARIZATION

This part aims at improving the classification aecy by
performing a refinement of the road network, fijithe gaps in
the roads and smoothing road borders, on the bhsaight
segment detection.

Consider a 3-class labelled image such as the bfiguoe 4.c.
First, a binary image containing the road netwaroged and
one pixel width) boundaries is formed (the whiteets in the
example of figure 5.a). Second, straight segmergsdatected
on this image (the pixels in red in figure 5.a)ir@lh segments
are associated according to two sets of geometrickds
forming some rectangular areas (the red and blxelgiof
figure 5.b), which are then set to the class “road’dorder to
regularize the road network.

Straight segment detection principle: the user rentevo
parameters, which are the number of pixels of anseg and a
threshold on the residual (quality of the fit). $ithe binary
image is scanned, and for each white pixel encoediea
neighboring white pixel is searched and so on upeamposed
number of pixels is reached. Then a first testpigliad to the
segment: the distance between the first and theplasl must
be larger than the number of points multiplied 4. 3n case of
success, the straight line model parameters armmatetl by
mean squares, and the squared root-mean-squaréresidual)
is computed in order to assess a quality measuszcAnd test
is then applied: if the residual is lower than aesold
(provided by the user), a straight segment is dedecand
parameters are stored in an array as well as thduad. At the
end, we have a list of straight segments. Thiddigten ordered
with respect to the residual values, and a non-maxi
suppression with respect to the residual is perdadrim order to
avoid aggregates. A segment is eliminated if tiséadice of one
of these two extremities is smaller than 7 pixetsrf a higher
residual segment, and if the extremity projectiefohgs to this
second segment.

Segment association principle: two geometrical setsiles are
used to associate segments. The first handle tbe chtwo
close and collinear segments. Two segments areciatsw if
the distance between their centers is lower thahreshold
given by the user, and if the angular distancevgel than 3°,
and if the distance from a center of one segmethecstraight
line of the other (and vice-versa) is smaller tfapixels. In
case of association, a resulting straight lineuitdbbetween the
farthest extremities of the two segments and ctesad” is
attributed to the a 15-pixel width rectangle on tbad side on
this line if more than half of the pixels on thi®a are initially
of class “road”. The second set of rules handlectse of two
close, parallel and non-collinear segments. Iftthe distances
from the centers to the lines belongs to the irtlem are
comprised between 7 and 25 pixels, and if the amglistance
is lower than 3°, and if the distance between thgment
centers is lower than a threshold given by the,umed if the
mean of the centers of the two segments belondheaoad
sides of the two segments, an association is peefdr Then
class “road” is attributed to the part betweentthe segments if
more than half of the pixels on this area are afijtiof class
“road”.

We have used the segment detector algorithm withraber of
pixels equal to 30, and with a threshold on thadted equal to
10. Then with the segment association algorithm tive
thresholds (for rule 1 and 2) were equal to 180 Hd@ pixels.
This four parameter configuration is noted {30, 180, 100}.
Two other configurations were tested, {50, 20, 3800} and
{80, 100, 600, 400}. Results were combined to wavith
several segment lengths (figure 5.b shows the

combination). It can be seen in table 3 that theralVaccuracy,
and most of the other measures, are better thahowtit
regularization (compare with method 4 in table 2).

method 6

ey P
PG Wy 4
| SRV
Figure 5. (a) white: road network boundaries onag pn the
image of figure 2.a, red: straight line segmenedetd ; (b) the
red and blue rectangle areas (resulting from twiferdint
segment associating rules) are set to class “rdad’road

network regularization (method 6).

method 5 + segment regularization
(length 30, 50 and 80 pixels) (method 6)
Overall accuracy 0.72
Producer’s 0.81
accuracy road
Producer’s 0.75
accuracy building
Producer’s 0.55
accuracy other
User’s accuracy 0.49
road
User’s accuracy 0.81
building
User’s accuracy 0.79
other

Table 3. Classifier of method 5 with regularizatmassification
accuracies (in percentage).

5. CONCLUSION

Building and road detection on VHR aerial imagesdefse
urban areas has been investigated. The suggestadaahp
contains segmentation and classification algoritlemgecially
well adapted to multispectral data, and both spatid spectral
information are used at the object level. The éxibloitation of
the geometry improves class separability, attengathe bad
detection and the false alarm problems. Howevahlpms are
still present because in our case even geometrgtisnough to
suppress class overlaps. A second suggestion irgtegrate a

finapriori knowledge and contextual information arowtglects in



the decision process, attenuating again these gnhlabove
all for the “building” class. Finally, a post-clafsation

algorithm has been suggested to regularize the ne#dork,
improving the classification accuracy.
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