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ABSTRACT:

In order to use stereo camera based measurements in machine vision high accuracy geometric camera calibration is absolutely essential.
For many applications, e.g. in optical navigation it is necessary to use the epipolar constraint to improve matching algorithms in terms
of speed and reliability. Another field of application is the computation of high dense disparity maps where a precise image rectification
is needed. The objective is to determine the interior camera parameters including a distortion model as well as the exterior orientation.
Therefore, we introduce a two-step approach to calibrate a stereo camera system by means of diffractive optical elements. Working
as a beam splitter with precisely defined diffraction angles, it produces a well known diffraction point pattern. As the virtual sources
of the diffracted beams are points at infinity, the object to be imaged is invariant against translation. This particular feature allows
a complete camera calibration with a single image avoiding complex bundle adjustments, resulting in a very fast and reliable single
camera calibration. This procedure has been extended for stereo systems to determine the exterior orientation of both cameras. A
comparison with classical photogrammetric methods using chessboard pattern and a calibration with fixed stars exploiting their accurate
angular positions will show the capability of the introduced calibration method. The compact calibration setup also allows an in-field
calibration.

1 INTRODUCTION

In order to use camera based measurements in machine vision
high accuracy geometric camera calibration is absolutely essen-
tial. The objective is to determine the interior camera parameters
needed for mapping 3D world coordinates to 2D image coordi-
nates. For any application using stereo or even multi-camera im-
ages an exact knowledge about the exterior camera calibration is
crucial. It is used to apply the epipolar constraint or to rectify
images for calculating high dense disparity maps.
A common approach is the photogrammetric calibration using
predefined calibration grids (Brown, 1971, Tsai, 1987). Several
observations with different orientations are needed to estimate
the camera parameters by minimizing a nonlinear error function.
Due to a restricted grid size this technique is more or less limited
to close range camera calibration. Another method eligible for
far field camera calibration uses collimator-goniometer arrange-
ments to illuminate a set of single pixels (n ×m). Knowing the
directions of the collimated light, it is possible to estimate the
camera parameters (Schuster and Braunecker, 2000). This fact
is also used with stellar calibration using fixed stars with well
known angular positions. A more comprehensive summary of
key developments in camera calibration is provided in (Clarke
and Fryer, 1998).
The calibration procedure reported here combines the particular
advantages of calibration grid arrangements and single pixel il-
lumination (Grießbach et al., 2008). By using diffractive optical
elements (DOE) as beam splitters only one image with n × m
diffraction points is needed to estimate the interior camera pa-
rameters. An extended procedure is proposed here to calibrate a
stereo or multi-camera system. This method will be compared

with a stellar calibration which is in fact working quite similar to
the DOE calibration and a well optimized photogrammetric ap-
proach (Strobl et al., 2005) as a reference.

2 CAMERA CALIBRATION WITH DIFFRACTIVE
OPTICAL ELEMENTS

DOEs can be used to split an incoming laser beam with wave-
length λ into a number of beams with well-known propagation
directions. As the image on the sensor is a Fraunhofer diffraction
pattern, each projected image point represents a point at infinity,
denoted in 3D projective space P3 by the homogeneous coordi-
nate M̃ =

[
X,Y, Z, 0

]T with,

M̃ =


λfx

λfy√
1− λ2(f2

x + f2
y )

0

 (1)

where fx, fy denote a spatial frequency encoded in the DOE.
With suitable computational algorithms (Hermerschmidt et al.,
2007) it is possible to encode spatially aperiodic DOEs with ar-
bitrary spatial frequencies, choosing the propagation directions
freely. As they are easier to design for the large aperture diame-
ters needed spatially periodic DOEs were used here. Their spatial
frequencies are given by fx,y = nx,y/gx,y , with nx, ny denot-
ing the particular diffraction orders and grating constants gx, gy .
The grating vectors are defining the x− and y−axis of the DOE
coordinate frame.
However, equation (1) is only valid if the incident light wave is a
plane wave with uniform intensity distribution, perfectly perpen-



dicular to the DOE surface. In a real setup, the beam is finite in
extension and often has a non-uniform intensity profile, which is
typically Gaussian. Moreover, a slight tilt of the DOE with re-
spect to the incident beam is hard to avoid.
The deviations of the real beam profile from a plane wave cause
the diffraction spots in the far field to have a certain size, which
can be estimated from the Convolution theorem of Fourier Op-
tics (Goodman, 2004). For a more detailed analysis, a laser beam
can be expressed by its angular spectrum. The consequent propa-
gation directions are determined with the diffraction formula for
non-perpendicular incidence to the DOE, which needs to be ap-
plied in our analysis anyway because of the potentially unavoid-
able tilt of the DOE with respect to the incident laser beam. For
the following analysis, the DOE coordinate system will be used,
in which the incident beam is given by,

r =
[
sin(β),− sin(α) cos(β), cos(α) cos(β)

]T (2)

with the euler angles α and β rotating the x− and y−axes of
the DOE coordinate frame in terms of the collimator coordinate
frame. The directions of the diffracted beams are now obtained
as follows (R.C.McPhedran and L.C.Brown, 1980).

M̃ =


λfx + rx

λfy + ry√
1− (λfx + rx)2 − (λfy + ry)2

0

 (3)

It is straightforward to calculate the diffracted beam directions in
the DOE coordinate frame by simple matrix operations, therefore
the somewhat lengthy expressions that are obtained as a result
will be omitted. In order to transform the beam directions into the
camera coordinate frame, the exterior orientation of the camera in
terms of the DOE coordinate frame has to be considered,

M̃′ =

[
R t
0 1

]
M̃ (4)

where R is a 3×3 rotation matrix defining the camera orientation
and t the translation vector for the camera position. Equation
(4) shows that the mapping of ideal points at infinity is invariant
against translation which is a necessary condition for the follow-
ing steps. This is also a great advantage compared to classical
calibration grids for just one image is sufficient for calibration
and therefore less parameters have to be estimated.

The accuracy of the diffraction angles depends on the accuracy
both of the wavelength and the grating constants, as can be seen
from equation (1). Therefore, gas lasers emitting precisely given
wavelengths in the visible were used, rather than diode lasers
which can easily drift in wavelength. The angular accuracy was
checked with a collimator-goniometer arrangement finding only
minor deviations from the computed values of less than 0.001◦.

Grating period 41.1 µm × 41.1 µm
Element diameter 75 mm
Angular spacing 0.88◦

Highest diffraction order [35, 35]
Max. diffraction angle ± 46.1◦

Table 1: DOE parameter for λ = 632.8 nm

2.1 Camera model

In projective space P mapping of a homogeneous object point
M̃ ∈ P3 to an image point m̃ ∈ P2 is defined with,

m̃ = PM̃ (5)
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Figure 1: Pinhole camera model

where P is a 3×4-projection matrix consisting of the parameters
of the interior- and exterior orientation of the camera.

P = K
[
R|t
]

(6)

with R, t describing the rotational matrix and translation of the
exterior orientation and the camera matrix K containing the focal
length f and the principal point

[
u0, v0

]T .

K =

f 0 u0

0 f v0
0 0 1

 (7)

The ideal beam direction M′ =
[
X ′, Y ′, Z′

]T denoted in eu-
clidean representation R3 is mapped into 2D image coordinates
by projecting it on the plane Z′ = 1xy

1

 =

X ′/Z′Y ′/Z′

1

 (8)

with x, y representing the ideal normalized image coordinates.
From equation (5, 6) we get the ideal pixel image coordinates
m̃ = [u, v, 1]T . uv

1

 = K

xy
1

 (9)

Before applying the pinhole model lens distortion has to be con-
sidered. There are several distortion models available. The most
common is the radial distortion model by Brown (Brown, 1971)
considering pincushion or barrel distortion which is expressed as
follows, [

x̂
ŷ

]
=

[
x
y

]
(1 + k1r

2 + k2r
4 + k3r

6 + · · · ) (10)

with
r2 = x2 + y2 (11)

The complete mapping of ideal points to distorted image coordi-
nates

[
û, v̂
]T is subsumed to[

x
y

]
7→
[
û
v̂

]
=

[
u0

v0

]
+ f

[
x
y

] (
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2 + k2r
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6 + · · ·
)

(12)
Given a set of correspondent points M̃ ↔

[
û, v̂
]T we seek to

minimize the cost function

min
m

∥∥∥∥[û− u0

v̂ − v0

]
− f

[
x
y

] (
1 + k1r

2 + k2r
4 + k3r

6 + · · ·
)∥∥∥∥2

(13)
where m =

[
f, u0, v0, k1, k2, k3, ω, ϕ, κ, α, β

]T describing the
interior and exterior orientation of the camera and a possible ro-



tation (α, β) of the DOE in terms of the collimation coordinate
frame. For the mapping to be invariant against translation the ex-
terior orientation only consists of the rotation matrix R which is
expressed by the euler angles ω, ϕ, κ. Correspondent points are
found by an iterative approach constantly refining the model pa-
rameters. The result is improved by calculating the centroids of
the diffraction points which gives subpixel accuracy.

2.2 Single camera calibration setup

Figure 2: Scheme of camera calibration with DOE

The principle scheme for geometrical sensor calibration is illus-
trated in figure 2. A helium-neon laser with a wavelength of 632.8
nm is collimated and enlarged with a beam expander to a diameter
of 78 mm. The enlarged beam is then diffracted by a DOE which
is located directly in front of the camera optics. The diameter of
the incident laser beam and that of the DOE active area should at
least as large as the aperture diameter of the camera lens. Each
of the diffracted beams is focused within the image plane of the
camera. In order to obtain spots covering the whole sensor area,
the maximum diffraction angle of the DOE should be larger than
the field of view of the camera. No further alignment steps are
necessary, because firstly the mapping of the diffraction points
is invariant against translation, and secondly the rotation of the
DOE in terms of the collimation system as well as the exterior
orientation of the camera is modeled and can thus be determined
(Grießbach et al., 2008).

2.3 Multi camera calibration

Many applications in computer vision require two or more cam-
eras. To apply epipolar geometry which is important for finding
correspondences in multiple views a very good knowledge about
their relative exterior orientation is needed. As a by-product from
single camera calibration the rotation R(ω, ϕ, κ) from DOE co-
ordinate frame to camera coordinate frame is determined. In case
the base distance between the cameras of a stereo system is small,
illuminating both cameras at ones it is evident that the relative ro-
tation ∆R between both camera frames is,

∆R = R2 · (R1)−1 (14)

But more likely is a larger base distance allowing only for single
camera illumination. Therefore, after having the first camera cal-
ibrated either the camera system or the calibration setup is shifted
until the second camera is seeing the diffracted beams. Doing this
by pure translation still allows to apply equation (14).
Since the mapping is invariant against translation it can not be
determined with this setup. For this reason a scale, e.g. a calibra-
tion grid is used for estimating the base distance. The advantage
over classical methods is that the parameters of interior orienta-
tion and relative rotation are already determined independently
for each camera and only the translation has to be estimated. Of
course, it would be possible to estimate the full relative exterior
orientation including rotation but this leads to bigger errors as
rotation and translation are not fully independent.

3 STELLAR CALIBRATION

Fixed star angular position are recorded and used for different
purposes, e.g. navigation or time measurement over a long time.
Nowadays these positions are very well known due to satellite
measurements. The Hipparcos star catalog will be used here (The
Hipparcos and Tycho Catalogues, 1997).
Calibrating a camera system with stars is in fact quite similar
with the proposed DOE calibration method. First an image of the
starry sky has been made and the seen stars were associated with
their precise position (directions) from the catalog. Additionally
the atmospheric refraction which causes astronomical objects ap-
pear higher in the sky as they are has to be taken into account.
It is zero in the zenith but more than 1 pixel (≈ 0.1◦) at 10◦over
the horizon and therefore a source of error. An approximation is
shown in the following equation,

∆h = (60 tan(h)− 0.06 tan(h)3)/3600 (15)

where h denotes the zenith distance of an object. To apply this
formula the angular position given in equatorial coordinates in the
star catalog has to be transformed into the horizontal coordinate
frame. Therefore the exact position and time of the star image is
needed.

Figure 3: Star image (enhanced, constellations added)

Again as in DOE calibration the rotation from camera coordi-
nate frame to a reference frame (horizontal system) is determined.
Doing this for both cameras of the stereo system enables to deter-
mine the relative rotation of the cameras with equation (14).

4 RESULTS

To prove the validity of the proposed method a stereo camera
system with 200 mm base distance has been calibrated with the
DOE setup, a stellar calibration using fixed star positions and a
classical photogrammetric chessboard pattern calibration (Strobl
et al., 2005).

Prosilica GC 1380H
Sensor size 1360×1024
Pixel size 6.45 µm
Focal length 4.8 mm
iFoV 0.077 deg
FoV 42.8×34.5 deg

Table 2: Camera parameters



4.1 Interior Orientation

The photogrammetric chessboard pattern calibration was achieved
with an elaborate method using 10 differnt poses with additional
external pose measurements. The parameters of interior and ex-
terior orientation are estimated in a complex bundle adjustment.
This is a major difference to the DOE and stellar calibration were
the interior parameters are determined independently for each
camera with a single image. Table 3 and 4 are showing the re-
sults with f, u0, v0 are stated in pixel values. The distortion pa-
rameters are without dimension but applying to normalized image
coordinates as seen in equation (10). σ denotes the residual error
in pixel values obtained with n measurements.

DOE Stars Chessboard
f 773.6 772.5 772.4
u0 655.2 653.4 655.2
v0 545.3 545.2 546.3
k1 -0.25697 -0.25026 -0.24691
k2 0.10988 0.10198 0.09891
k3 -0.02440 -0.02128 -0.02020
n 7119 367 1436
σ 0.12 0.18 0.21

Table 3: Interior parameters for left camera

DOE Stars Chessboard
f 771.4 770.0 770.3
u0 709.9 709.8 709.1
v0 503.9 503.8 504.5
k1 -0.25686 -0.24733 -0.24799
k2 0.11071 0.09548 0.10055
k3 -0.02494 -0.01793 -0.02073
n 7324 383 1445
σ 0.12 0.17 0.21

Table 4: Interior parameters for right camera

It can be seen that despite of the very different methods the re-
sults are quite comparable with a slightly better residual error for
the DOE measurement. Figure 4 shows the equally distributed
diffraction points covering the whole image which also applies
for the star calibration (figure 5). This is not the case for the pho-
togrammetric calibration where border areas of the image are of-
ten without measurement points which is a disadvantage for cal-
culating the distortion model. Both figures also show the random
character of the error vectors which are enlarged for visibility.

Figure 4: DOE image with associated points including enlarged
residual errors

Figure 5: Star image with associated stars including enlarged
residual errors

Figure 6 shows the strong distortion of the used 4.8 mm lens with
a displacement of more than 100 pixel in the outer regions of the
image. For a better visibility only every second diffraction point
is displayed here. The used distortion model was just adequate in
this case. A correction for radial distortion is shown in Figure 7
and 8.

-200 0 200 400 600 800 1000 1200 1400 1600

-200

0

200

400

600

800

1000

1200

Figure 6: DOE image with reduced point field and radial distor-
tion vectors

4.2 Exterior Orientation

In the photogrammetric approach the relative exterior orientation
is estimated directly within the complex bundle adjustment. It
was assumed that the relative orientation of both cameras is fixed
for all 10 poses. Since with DOE and stars the mapping from
points at infinity is invariant against translation only the rotation
is estimated separately for each camera as by-product from in-
terior calibration and used as shown in section 2.3. One stereo
image from the photogrammetric calibration is now taken to de-
termine the translational parameters with knowledge of the inte-
rior orientation and relative rotational parameters.
Again the achieved parameters are alike, though with a small ad-
vantage for the DOE and stellar calibration as seen with the in-
terior orientation (Table 5). The exterior parameters are stated
in degree and mm whereas the residual error σ is given in pixel
values.



DOE Stars Chessboard
ω 0.103 0.077 0.118
ϕ -0.654 -0.654 -0.568
κ 0.311 0.289 0.362
tx -200.0 -200.0 -200.2
ty -1.1 -1.2 -0.6
tz -1.2 -1.2 -1.3
n 314 314 2881
σ 0.14 0.17 0.77

Table 5: Exterior orientation of the stereo system

5 CONCLUSION

A method for single geometrical camera calibration including
an extension for multi camera systems was proposed. It uses
custom-made diffractive optical elements working as beam split-
ters with precisely known diffraction angles. As the virtual sources
of the diffracted beams are points at infinity, the object to be
imaged is similar to the starry sky, which gives a image invari-
ant against translation. This particular feature allows a complete
camera calibration with a single image avoiding complex bun-
dle adjustments, resulting in a very fast, easy to use and reliable
calibration procedure. The method was shown on an wide-angle
lens but also applies for far field calibration with telephoto lenses
which is difficult to manage with classical methods.

The achieved results are in accordance with classical camera cal-
ibration using the pinhole camera model and a radial distortion
model. This is proved by comparing results from DOE, stellar
and photogrammetric calibration noticing a slight advantage for
the DOE concept. Stellar calibration is also working very well but
difficult to handle due to dependencies regarding weather, light
pollution and various influences of the atmosphere.

Furthermore, the approach has been extended for multi camera
systems where the determination of the relative exterior orienta-
tion is essential. Due to a translational invariant mapping an ad-
ditional stereo image of a calibration chart is needed to achieve a
complete exterior orientation including translational parameters.

It is to stress that the results from the photogrammetric calibration
are accomplished only with a complex arrangement to support the
estimation with external pose measurements. This means an im-
provement compared with commonly used methods regarding ac-
curacy and repeatability. The achieved results are also depended
on the used poses which means an additional error source if not
conducted properly.

Figure 7: Original image

Figure 8: Corrected image
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Hermerschmidt, A., Krüger, S. and Wernicke, G., 2007. Binary
diffractive beam splitters with arbitrary diffraction angles. Opt.
Lett. 32(5), pp. 448–450.

The Hipparcos and Tycho Catalogues, 1997.

R.C.McPhedran, G. and L.C.Brown, 1980. Electromagnetic the-
ory of gratings. Springer Verlag Berlin, chapter R.Petit (ed.),
pp. 227–275.

Schuster, R. and Braunecker, B., 2000. The calibration of the adc
(airborne digital camera) -system. Int. Arch. of Photogrammetry
and Remote Sensing pp. 288–294.

Strobl, K. H., Sepp, W., Fuchs, S., Paredes, C. and Arbter, K.,
2005. DLR CalLab and DLR CalDe.

Tsai, R., 1987. A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv cam-
eras and lenses. Robotics and Automation, IEEE Journal of 3(4),
pp. 323–344.


