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ABSTRACT: 
 
The paper evaluates by means of Monte Carlo simulations the estimator of the regression coefficient obtained by the classical 
W-based spatial autoregressive model and the structural equations model with latent variables (SEM) on the basis of data sets that 
contain two types of spatial dependence: spillover from (i) a hotspot and (iia) first order queen contiguity neighbors or (iib) inverse 
distance related neighbors. The classical models are either correctly specified or ignore (i), as is common in practice. SEM takes 
spatial dependence into account by means of a fixed number of nearest neighbors as well as the dependent variable in the hotspot 
weighted by inverse distance. The estimation results are analyzed in terms of bias and root mean squared error (RMSE) for different 
values of the spatial lag parameters, specifications of weights matrices and sample sizes. The simulation results show that compared 
to the misspecified models SEM frequently has smaller bias and RMSE and even outperforms the correctly specified models in many 
cases. These trends increase when the spatial lag parameter for spillover increases. The lead of SEM also increases by sample size. 
Finally, SEM is more stable in terms of both bias and RMSE over various dimensions. 

 
 

1. INTRODUCTION 
 

The conventional spatial regression model is based on a 
spatial weights matrix, usually denoted W, that accounts for 
spatial dependence and spill-over effects among the spatial 
units of observation. The latent variables approach (denoted 
SEM below), introduced by Folmer and Oud (2008), replaces 
the spatially lagged variables in the structural model by latent 
variables and models the relationship between latent spatially 
lagged variables and their observed indicators in the 
measurement model. SEM not only can produce virtually the 
same estimates as obtained by the classical approach but also 
is more general.  
 
In order to gain insight into the characteristics of the 
estimators of the regression coefficients including the spatial 
autocorrelation coefficient produced by the classical 
approaches and SEM, Liu et al (2010a) carried out a series of 
Monte Carlo simulations on the basis of Anselin’s (1988) 
Columbus, Ohio, crime data set which was also used by 
Folmer and Oud (2008) for illustrative purposes. The latent 
spatial lag variable in the SEM model was measured by a 
number of nearest neighbors. Data was generated on the basis 
of a first order queen contiguity or an inverse distance 
weights matrix. The main result was that the classical 
approach (estimated with weights matrix consistent with the 
data generation matrix) had lowest bias and RMSE in the 
majority of cases. SEM outperformed the classical approach 
for some W matrices, however. Particularly, it had the 
smallest bias in several cases. Liu et al (2010b) examined the 
performances of the two approaches in the context of spatial 
dependence due to spillover from hotspots. In that case 
spatial lag variable was measured by the values of the 
dependent variable in hotspots weighted by inverse distance. 
The simulation results indicated that both approaches 

performed better for smaller values of the spatial lag 
parameter and larger sample sizes. SEM tended to 
outperform the classical approach in term of bias but the 
classical model based on first order contiguity matrix had 
lowest RMSE in most cases. Furthermore, SEM was most 
stable in terms of variations in both bias and RMSE. Globally 
speaking, the performances of both approaches do not differ 
much. 
 
In this paper we further evaluate the performances of the 
classical W-based approach and SEM in a more general 
setting that combines the two different types of spatial 
dependence considered in the previous simulations. The 
remainder of the paper is organized as follows. Section 2 
briefly specifies the model structures of the classical W-based 
approach and SEM. A description of the experimental design 
is given in section 3. In section 4 we report the simulation 
results and section 5 concludes the paper. 

 
 

2.  MODEL SPECIFICATIONS 
 
The classical spatial autoregressive model reads: 
 

εβρ ++= XWyy                             (1)            
ε ~ )            (2) ,0( 2

nIN σ
                                                               
where  is an y 1×n  vector of observations on the 
dependent variable, X is an  data matrix of 
explanatory variables with associated coefficient vector 

kn×
β , 

ε  is an 1×n  vector of error terms. W is the nn×  
spatial weight matrix, with spatial autoregressive or spatial 
lag parameter ρ . (For further details see amongst others 
LeSage and Pace, 2009)  
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A SEM in general form consists of two basic equations: 
 

εη +Λ=y  with ( ) Θ=εcov                       (3) 
ζηη += B  with ( ) Ψ=ζcov                      (4) 

                           
Equation (3) is the measurement model with y the p-vector of 
observed variables or indicators,  the matrix of loadings 
of the observed variables (indicators) on the k-vector of latent 
variables 

Λ

η 1 , and  is the p×p measurement error 
covariance matrix. In the structural model (4), B specifies the 
structural relationships among the latent variables and  is 
the k×k covariance matrix of the errors in the structural 
model. The measurement errors 

Θ

Ψ

ε  are assumed to be 
uncorrelated with the latent variables η  as well as with the 
structural errors ζ  who are supposed to be uncorrelated 
with η . (For details on identification, estimation, testing and 
respecification of structural equation models see Jöreskog 
and Sörbom, 1996) 
 
The SEM spatial autoregressive approach replaces the 
spatially lagged variable Wy in the W-based equation (1) by a 
latent variable η  in the structural model. In the 
measurement model η  is measured by a set of observed 
variables. This model structure implies that both spatially 
lagged variables related to neighboring regions and hotspots 
can be indicators of the same latent variable. For detailed 
model specifications see Folmer and Oud (2008). 
 
 

3. EXPERIMENTAL DESIGN 

The dependent variable (y) in each spatial unit is affected by 
the dependent variable in one or more neighboring units as 
well as by hotspots. For data generation this implies that 
besides the spatial structure, the hotspot also needs to be 
known. However, it is not until the samples are generated that 
we get to know which region is the hotspot (defined by 
highest value of y). To solve this problem we take a step 
backward and choose the ‘potential’ hotspot on the basis of 
the independent variable x instead. That is, we designate the 
hotspot according to the largest value of x.2 
 
We consider regular lattice structures of dimensions 7×7 
(N=49), 10×10 (N=100) and 15×15 (N=225). The spatial 
weight matrices are defined on these lattice maps. To 
generate samples we rewrite equation (1) as: 
 

εβρρ +++= xyWyWy 2211                         (5) 
    or 

)()( 1
2211 εβρρ +−−= − xWWIy                (6) 

 

                                                        
1 Observe that a SEM will not be identified if the latent 
variables have not been assigned measurement scales. It is 
convenient to fix the measurement scale of a latent variable 
by fixing one iλ , usually at 1. That is, one often chooses 

11 =λ . 
2 Here we only consider one hotspot. However, it is possible 
to consider several hotspots simultaneously (see Liu et al., 
2010b) 

where W1 is the weights matrix representing the spatial 
hotspot structure. Particularly, W1 is the inverse distance 
matrix with elements equal to 1/dij for cell i and hotspot j 
and 0 elsewhere), W2 is the conventional first order 
contiguity or inverse distance matrix, and 1ρ  and 2ρ  are 
corresponding spatial lag parameters. 
 
Next, y is generated as follows: 

1. Generate the exogenous variable x by drawing from a 
uniform (0, 10) distribution.  

2. Fix the regression coefficient for all simulation runs: 
1=β . 
3. The spatial lag parameters 1ρ  and 2ρ  take values 0, 

0.1, 0.3, 0.5, 0.7 and 0.9 consecutively3.  
4. Generate values for the error term ε  by randomly 

drawing from a normal distribution with mean zero and 
variance 2.0. 

5. Choose the hotspot according to the values of x 
generated in step 1 and compute y according to equation (6).  

 
Both a first order contiguity queen and an inverse distance W2 
is used to generate data.4 We estimate two types of classical 
models. One, the TRUE model, estimated with the same W1 
and W2 as in the model used for data generation. The second 
is in line with common estimation practice and considers 
only one overall type of weights matrix, viz. W2 only. 
However, we consider both the first order contiguity and 
inverse distance matrix. Estimation of the SEM model is 
always based on the first three nearest neighbors and 
spillover from the hotspot. The estimators are compared in 
terms of bias and RMSE of β , the coefficient of the 
regressor x.5 The number of replications is set to 500. 
 
 

4.  SIMULATION RESULTS 

In this section we present the main simulation results for 
TRUE (estimated with W1 and W2 used to generate the 
samples), CONT (estimated with W2 specified as first order 
contiguity matrix only), DINV (estimated with W2 specified 
as inverse distance matrix only) and SEM (estimated with the 
first three nearest neighbors and spillover from the hotspot j 
as indicators for cell i). Observe that due to the restrictions on 

1ρ  and 2ρ , not all parameter combinations are feasible, as 
explained in the previous section. 
 
Table 1 reports the biases of the estimators of β  for 
samples generated by spillover from hotspot and from first 
order queen contiguity neighbors for 49 observations.  It 
shows that when and 0.1, CONT has lower biases 
than SEM in most cases and outperforms TRUE a few times, 
although the differences are quite small among all models. 
When 

01 =ρ

01 =ρ , 02 =ρ or 0.7 and 0.11 =ρ , 02 =ρ or 0.1, 

                                                        
3 Note that in a spatial autoregressive model, the asymptotic 
properties of the ML estimator require 0>− WI ρ (Anselin, 
1988). In the present case this constraint is  

02211 >−− WWI ρρ .      
4 W1 is always an inverse distance matrix. 
5 Since they are not directly comparable, we do not compare 
the spatial autoregressive coefficients (see Liu et al.,2010b). 
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SEM outperforms TRUE or performs equally well. When 
, SEM outperforms CONT in almost every case and 

its dominance becomes more distinct as the value of 
0.31 ≥ρ

1ρ  
increases. It is not surprising that CONT is better than SEM 
for small values of 1ρ , since it is the genuinely true model 
when . Also observe that for each value of , the 
biases of SEM tend to increase as 

0=1ρ 1ρ

2ρ  increases. But the 
increase is not uniform over the interval of  for a fixed 

2

1ρ
ρ . This is probably due to the limited number of indicators, 
especially the fixed numbers of neighbors included in SEM 
estimation. 
 
The RMSE for the model generated on the basis of a first 
order contiguity matrix is presented in Table 2. The table 
shows that CONT has smallest RMSE in more than half of 
the cases. Moreover, the RMSEs of SEM and CONT 
basically follow the pattern of bias. The lead of CONT 
diminishes when  grows larger and for values of 1ρ

0.51 ≥ρ , SEM beats CONT in most cases. Moreover, for 
the same range of values of 1 , SEM even outperforms 
TRUE in more than half of the cases. 

ρ

 
For samples generated with spillover from hotspot and from 
other regions according to inverse distance, the biases of β  
are summarized in Table 3. Comparison of this table and 
Table 1 shows that in the present case both approaches 
perform worse. It also shows that SEM has lower bias than 
DINV most of the time. As the value of 1  goes up to 0.9, 
SEM still remains stable in terms of bias while the estimation 
results of DINV get extremely biased. Another interesting 
finding is that SEM outperforms TRUE more often than in 
the previous case. 

ρ

 
Table 4 shows that the RMSEs and bias follow similar 
patterns in the present case. Moreover, The RMSEs of SEM 
and DINV tend to diverge more rapidly when 1ρ  increases. 
Besides, SEM also outperforms TRUE more frequently than 
in the previous case. 
 
Tables of results for sample sizes 100 and 225 are not 
presented here due to length limitations. They are available 
upon request from the first author. The main results are the 
following. When sample size goes up to 100 and 225, SEM 
outperforms the classical W-based approaches more in terms 
of bias, but it does not uniformly outperform them. The 
comparison in terms of RMSE as a function of the number of 
observations is very much in line with the bias pattern.  
 
The above analyses of bias and RMSE of the estimator of β  
show that SEM outperforms the classical W-based models in 
most cases with more obvious dominance in terms of bias 
than RMSE. Specifically, it tends to increasingly outperform 
the classical approach when 1  goes up. These conclusions 
hold for the correctly specified classical models but even 
more so for the misspecified models which ignore spillover 
from hotspots. As far as the type of weights matrix used in 
sample generation is concerned, both approaches have larger 
biases and RMSEs for samples generated with spillover from 
hotspot in combination with inverse distance matrix. 
Although SEM is also at a disadvantage in the type of 
samples as it only considers three neighbors in contrast to the 
correct and much larger number (total sample size) of units 

that inverse distance matrix model takes into account, DINV 
produces the most biased results in the majority of cases. 
SEM makes a winner in terms of stability of bias and RMSE 
over changing values of the spatial lag parameters, sample 
sizes and types of weights matrix used for sample generation.  

ρ
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 Hotspot ( 1ρ ) + Contiguity ( 2ρ ), Sample size = 49 

 02 =ρ  0.1 0.3 0.5 0.7 0.9 

 
TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

 
01 =ρ  

 
-0.004 
-0.006 -0.004 

-0.003 
-0.005 0.005 

-0.001 
-0.003 0.006 

0.001 
-0.001 0.015 

0.004 
0.000 -0.004 

-0.013 
0.003 0.014 

 
0.1 

 
-0.004 
-0.001 0.000 

-0.003 
-0.001 -0.003 

-0.001 
-0.001 0.004 

0.001 
-0.002 -0.009 

0.002 
-0.011 -0.025 

-0.023 
-0.061 0.051 

 
0.3 

 
-0.004 
-0.002 0.000 

-0.003 
-0.007 -0.004 

-0.002 
-0.020 -0.009 

0.000 
-0.028 -0.017 

0.002 
-0.013 -0.023   

 
0.5 

 
-0.004 
-0.010 0.001 

-0.003 
-0.017 -0.003 

-0.003 
-0.012 -0.010 

0.007 
-0.015 -0.023    

 
 

 
0.7 

 
-0.004 
0.002 0.000 

-0.003 
0.016 -0.001 

0.049 
0.075 -0.037       

 
0.9 

 
0.000 
0.051 

 
-0.001 

-0.004 
0.060 -0.030         

Table 1. Bias of the estimator of β  for spillover from hotspot and first order queen contiguity neighbors 
 
 

 

 Hotspot ( 1ρ ) + Contiguity ( 2ρ ), Sample size = 49 

 02 =ρ  0.1 0.3 0.5 0.7 0.9 

 
TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

TRUE 
CONT 

 
SEM 

 
01 =ρ  

 
0.061 
0.060 0.071 

0.060 
0.060 0.075 

0.060 
0.060 0.075 

0.060 
0.060 0.072 

0.061 
0.061 0.072 

0.081 
0.063 0.138 

 
0.1 

 
0.061 
0.061 0.072 

0.061 
0.061 0.071 

0.060 
0.061 0.072 

0.061 
0.061 0.073 

0.063 
0.063 0.081 

0.079 
0.100 0.078 

 
0.3 

 
0.061 
0.061 0.063 

0.061 
0.061 0.067 

0.061 
0.062 0.062 

0.061 
0.062 0.063 

0.060 
0.100 0.068   

 
0.5 

 
0.061 
0.061 0.065 

0.061 
0.062 0.063 

0.061 
0.060 0.063 

0.075 
0.127 0.064    

 
 

 
0.7 

 
0.061 
0.062 0.061 

0.061 
0.064 0.061 

0.111 
0.166 0.071       

 
0.9 

 
0.064 
0.112 

 
0.061 

0.060 
0.220 0.069         

Table 2. RMSE of the estimator of β  for spillover from hotspot and first order queen contiguity neighbors 
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 Hotspot ( ) + Inverse-distance ( ), Sample size = 49 1ρ 2ρ

 02 =ρ  0.1 0.3 0.5 0.7 0.9 

 
TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

 
01 =ρ

 
-0.012 
-0.012 -0.004 

-0.011 
-0.012 -0.014 

-0.011 
-0.011 -0.027 

-0.010 
-0.010 -0.060 

-0.009 
-0.010 -0.116 

-0.008 
-0.009 -0.022 

 
0.1 

 
-0.012 
0.000 0.000 

-0.011 
0.001 -0.005 

-0.010 
0.003 -0.023 

-0.009 
0.007 -0.065 

-0.009 
0.015 -0.143 

-0.004 
0.070 -0.009 

 
0.3 

 
-0.011 
0.046 0.002 

-0.010 
0.049 0.001 

-0.010 
0.058 -0.032 

-0.009 
0.078 -0.095 

-0.008 
0.141 -0.180   

 
0.5 

 
-0.010 
0.124 0.004 

-0.009 
0.134 -0.008 

-0.008 
0.168 -0.054 

-0.008 
0.256 -0.131    

 
 

 
0.7 

 
-0.008 
0.257 0.006 

-0.008 
0.296 -0.015 

-0.007 
0.506 -0.096       

 
0.9 

 
-0.006 
2.518 

 
-0.001 

-0.007 
3.244 -0.087         

Table 3. Bias of the estimator of β  for spillover from hotspot and inverse distance related neighbors 

 
 
 

 Hotspot ( ) + Inverse-distance ( ), Sample size = 49 1ρ 2ρ

 02 =ρ  0.1 0.3 0.5 0.7 0.9 

 
TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

TRUE 
DINV 

 
SEM 

 
01 =ρ

 
0.066 
0.066 0.071 

0.066 
0.065 0.077 

0.066 
0.065 0.084 

0.065 
0.065 0.097 

0.065 
0.064 0.143 

0.064 
0.064 0.127 

 
0.1 

 
0.066 
0.065 0.068 

0.066 
0.065 0.070 

0.066 
0.065 0.079 

0.065 
0.065 0.093 

0.065 
0.065 0.166 

0.063 
0.088 0.144 

 
0.3 

 
0.066 
0.077 0.067 

0.066 
0.078 0.067 

0.066 
0.083 0.067 

0.065 
0.094 0.107 

0.065 
0.144 0.184   

 
0.5 

 
0.066 
0.130 0.064 

0.066 
0.138 0.062 

0.065 
0.170 0.074 

0.065 
0.256 0.133    

 
 

 
0.7 

 
0.065 
0.258 0.061 

0.065 
0.296 0.061 

0.064 
0.506 0.102       

 
0.9 

 
0.064 
2.518 

 
0.060 

0.063 
3.244 0.097         

Table 4. RMSE of the estimator of β  for spillover from hotspot and inverse distance related neighbors 
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5.  CONCLUSIONS 
 

The paper evaluates by means of Monte Carlo simulations the 
estimator of the regression coefficient obtained by the classical 
W-based spatial autoregressive model and the structural 
equations model with latent variables (SEM) on the basis of 
data sets that contain two types of spatial dependence: spillover 
from (i) a hotspot and (iia) first order queen contiguity 
neighbors  or (iib) inverse distance related neighbors. Two 
types of classical models were considered. SEM takes spatial 
dependence into account by means of a fixed number of nearest 
neighbors as well as the dependent variable in the hotspot 
weighted by inverse distance. The estimation results are 
analyzed in terms of bias and root mean squared error (RMSE) 
for different values of the spatial lag parameters, specifications 
of weights matrices and sample sizes.  
 
The simulation results show that both approaches perform 
better for samples generated with spillover from the hotspot 
and from first order queen contiguity neighors. Moreover, 
compared to the misspecified W-based models, SEM frequently 
has smaller bias and RMSE and even outperforms the correctly 
specified models in many cases. These trends increase when the 
spatial lag parameter for spillover increases. The lead of SEM 
also increases by sample size. Finally, SEM was found to be 
more stable in terms of both bias and RMSE over various 
dimensions. 
 
Finally, note that in the case of SEM not all model search 
options were exploited. Specifically, the number of observed 
spatially lagged variables was a priori fixed whereas it offers 
ample opportunities to search and test the optimal number of 
observed indicators (see Folmer and Oud, 2008). Another 
option of SEM that was not exploited was the use of several 
latent variables to take spatial dependence into account (Folmer 
and Oud, 2008). Exploitation of this option would have brought 
SEM closer to the correctly specified model. Full exploitation 
of all its model search options might improve the performance 
of SEM in comparison with the classical W-based approaches.  
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