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RÉSUMÉ:

More and more mobile objects are now equipped with sensors allowing real time monitoring of their movements. Nowadays, the data
produced by these sensors can be stored in spatio-temporal databases. The main goal of this article is to perform a data mining on a
huge quantity of mobile object’s positions moving in an open space in order to deduce its behaviour. New tools must be defined to ease
the detection of outliers. First of all, a zone graph is set up in order to define itineraries. Then, trajectories of mobile objects following
the same itinerary are extracted from the spatio-temporal database and clustered. A statistical analysis on this set of trajectories lead
to spatio-temporal patterns such as the main route and spatio-temporal channel followed by most of trajectories of the set. Using
these patterns, unusual situations can be detected. Furthermore, a mobile object’s behaviour can be defined by comparing its positions
with these spatio-temporal patterns. In this article, this technique is applied to ships’ movements in an open maritime area. Unusual
behaviours such as being ahead of schedule or delayed or veering to the left or to the right of the main route are detected. A case study
illustrates these processes based on ships’ positions recorded during two years around the Brest area. This method can be extended to
almost all kinds of mobile objects (pedestrians, aircrafts, hurricanes, ...) moving in an open area.

1 INTRODUCTION

More and more mobile devices are equipped with tracking sys-
tems broadcasting accurate information about their movements.
Those sensors generate a large amount of data which can be sto-
red in spatio-temporal databases (STDB) in order to be ana-
lysed. Mobile objects monitoring is commonly used in various
fields such as the study of meteorological phenomena, animal
migration (Lee et al., 2008), crowd or pedestrian displacement
(Knorr et al., 2000), vehicle trips (cars, planes, ships) (Baud et al.,
2007, Giannotti et al., 2007). This mobile object monitoring can
be linked with intelligent system analysis to improve the system’s
performance (to ease freight transport planning, for example).
Using spatio-temporal databases led to new capabilities. Indeed,
the displacement of these mobile objects can be analyzed over a
long period of time in order to deduce the general behaviour of
mobile objects following the same route. Detecting outliers that
behave in an unusual way in such large amounts of data is a very
active research field linked to data mining and statistical analysis.

Assuming that mobile objects following a same itinerary behaves
in a similar optimized way, these behaviours can be deduced by
data mining on STDB. It pave the way to analysis of mobile ob-
jects’ trajectories and detection of unusual behaviour. Different
ways to detect outliers in a large dataset could be applied to our
issue. These outlier detections are classified according to the me-
thod used which can be based on distribution (Barnett and Le-
wis, 1994), distance (Knorr et al., 2000, Ramaswamy et al., 2000,
Lee et al., 2008) or density (Aggarwal and Yu, 2001, Papadi-
mitriou et al., 2003, D’Auria et al., 2006, Kharrat et al., 2008,
Lee et al., 2008). The distance and density methods are merged
in Lee’s works (Lee et al., 2008) based on a ”partition and de-
tect framework” that identifies subsets of trajectories which have
fewer neighbours. These parts of trajectories are considered as
locally unusual regarding density and distance criteria. Unfortu-
nately, time criteria is not taken into account in these methods.
In this paper, we propose a process to qualify the position of a
mobile object both on spatial and temporal criteria.

The main goal of this study is to define spatio-temporal analy-

sis tools to describe mobile objects’ behaviour. Assuming that
similar mobile objects following the same itinerary behave in a
similar way and move along an optimized main route, it could be
useful to analyse the trajectories of these objects in order to de-
duce spatio-temporal patterns and then, to qualify their behaviour
by comparing their trajectories to these patterns. Such trajectory
analysis tools coupled with a visualization process could be use-
ful for traffic monitoring operators to focus on outliers (mobile
objects behaving in an unusual way) for safety purpose. In some
areas, mobile objects’ traffic is very dense and the amount of data
to be processed in real time can be important. In order to create
these tools, notion of trajectories of mobile objects following a
same itinerary have to be defined. Then homogeneous subset of
trajectories of mobile objects following a same itinerary have to
be extracted from the STDB. The main goal of this study is to
analyze this subset of trajectories in order to infer the behaviour
of mobile objects following a similar path.

The paper is organized into 6 main sections. The first section of
this article introduces the main goal of this paper and related re-
search in data mining mobile objects movement. The second sec-
tion proposes a method to extract and filter trajectories of mobile
objects following a similar itinerary. The third section deals with
statistical computation of spatial and spatio-temporal route and
channel. This section also describes how to qualify the position
of a mobile object following an itinerary using these tools. The
fourth section present the results of our process applied to a case
study focused on passenger ships in the Brest area followed by
some discussions. Finaly, the last section concludes pointing to
further future work.

2 SPATIO-TEMPORAL TRAJECTORIES
EXTRACTION AND FILTERING

The general process proposed to identify unusual mobile object
behaviour is presented in figure 1. First of all, information about
mobile objects’ positions are stored into a spatio-temporal data-
base (figure 1 step 2). The zone graph of the area of interest is set
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up in the knowledge database (figure 1 step 5). A cluster of tra-
jectories of similar mobile objects following the same itinerary
is extracted from the STDB (figure 1 step 3). Then, a statistical
analysis is performed to compute spatio-temporal patterns (figure
1 step 4) which are then stored in a knowledge database (figure
1 step 5). Each new position of a mobile object can be compared
with these spatio-temporal patterns in order to qualify the mobile
object behaviour (figure 1 step 6). The next sections of this article
describe this general process.

FIG. 1: General process of spatio-temporal trajectory analysis

To analyze a large amount of moving objects’ trajectories, both
spatial and temporal information about their positions must be
stored. STDB are employed to store sets of discrete data having
spatial and temporal properties (Güting, 1994). These STDB of-
fer tools to perform queries on these sets of data on spatial and
temporal criteria. Formally, the position of a moving object (O)
is composed of spatial coordinates with a timestamp correspon-
ding to the date on which the moving object was at that position
(absolute time). So, the trajectory To of a mobile object O can be
defined as a sequence of temporally ordered positions Poj so that
To = (Pod, ..., Poj , ..., Poa) where Pod stands for the departure
position of the trajectory and Poa for the arrival one.

2.1 Definition of a zone graph

In order to deduce main routes, the trajectories of same-type mo-
bile objects following the same itinerary are extracted from the
STDB and then grouped together. The concept of itinerary can
be defined as an ordered sequence of spatial zones. In our study,
the space is a wide open area which allows mobile objects to na-
vigate from one place to another using the most effective path.

The concept of zone graph used in this section will now be forma-
lized. Zones of this graph represent important areas. These impor-
tant areas can be manually defined by an operator according to va-
rious criteria such as regulations (waiting areas, traffic channels,
restricted areas), geography (obstacles, isthmuses, straits, inlets),
economy (shops, loading sites, ports, fishing areas). This directed
zone graph can be used to describe an itinerary. Using the pre-
viously defined vertices of this zone graph (GZ ), an itinerary (I)
is defined as a sequence of ordered zones linked by arcs (a path
of the zone graph). An itinerary is made up of at least one arc,
therefore it has a departure zone (ZD) and an arrival zone (ZA).
A trajectory To follows an itinerary I through the vertices of the
zone graph GZ if it satisfies the following conditions :
Let an itinerary be defined as I = {ZD, ..., Zi, ..., ZA}
Let a trajectory be defined as To = (Pod, ..., Poj , ..., Poa)
Trajectory To follows the itinerary I if :

∀Zi ∈ I, ∃Poj ∈ To, Poj ⊂ Zi (1)

∀Poj ∈ To ∧ Poj ⊂ Zl,∀Pok ∈ To ∧ Pok ⊂ Zm,

Zl <I Zm → Poj < Pok

(2)

∀Poj ∈ To ∧ Poj ⊂ Zi → Zi ∈ I (3)

Poj ⊂ ZD → Poj = Pod (4)

Poj ⊂ ZA → Poj = Poa (5)

In other words, for each zone of the itinerary I , there is at least
one position Po of the trajectory To inside this zone (Eq. 1) which
respects the time order relation previously defined (Eq. 2). Taking
into account the frequency of trajectory samples and the speed
of the mobile object, trajectories that cross a zone of the graph
should have at least one position within this zone. No other posi-
tion Po of the trajectory To is within a zone that does not belong
to the itinerary (Eq. 3). Only the first position Pod of the trajec-
tory belongs to the departure area of the itinerary ZD (Eq. 4). In
the same way, only the last position Poa of the route belongs to
the last area of the route ZA (Eq. 5).

2.2 Extraction of an homogeneous group of trajectories

Now that the concepts of trajectory and itinerary have been for-
malized, the criteria used to extract trajectories following the
same arc A of an itinerary I can be detailed. The goal of this
part is to extract the STDB trajectories of same type T objects
moving along the same arc A of an itinerary I . This set is called
homogeneous group of trajectories of same type mobile objects
following the same arc of an itinerary (HGTAIT ). Thus, the first
selection criterion is the type of the mobile object. The second
selection criterion is a geographical one. The first position of the
trajectory must be the only one within the departure zone (ZD) of
the arc (Eq. 4), and the last position of the trajectory must be the
only one within the arrival zone (ZA) of the arc (Eq. 5). Finally,
the last selection criterion used is time. Some moving objects can
follow this itinerary periodically, these different trajectories can
be distinguished using a time interval. These selection criteria ap-
plied to the STDB are used to extract all the spatio-temporal
positions of a same mobile object in the meantime between po-
sitions Pod and Poa forming the trajectory of the mobile object
(Tro) ordered by timestamp. Finally, the trajectory should not
intersect zones of the graph GZ that do not belong to the itine-
rary I (Eq. 3). All valid trajectories previously extracted from the
STDB compose the HGTAIT to be analyzed.

2.3 Erroneous trajectory filtering

Once the HGTAIT has been extracted from the database, trajec-
tories with an important gap between two consecutive positions
or erroneous positions are filtered from the HGTAIT in order
to improve statistical analysis. First of all, trajectories containing
important communication loss compared to normal transmission
rate of the studied group of trajectories are discarded. Then, some
tracks may contain erroneous positions due to a malfunction of
the geolocation system or transmission errors. These erroneous
positions can be detected using the calculated speed of the posi-
tion compared to the maximum speed of a moving object of this
type. Trajectories having either erroneous positions or transmis-
sion gaps are removed from the HGTAIT .

2.4 Spatial shifting

In order to compute trajectories for which departure and arrival
positions are independent from time of transmission, starting
and ending positions of the trajectory within the departure and
arrival zones must also be filtered. Without this filtering, a bias
can be measured in the spatio-temporal patterns defined in the
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next section of this article. The cloud of initial starting positions
of the HGTAIT is represented in figure 2.a. The new starting
positions are computed by interpolation between a virtual
starting line (border of ZD) and each trajectory of the HGTAIT .
The same process is applied to the arrival zone ZA. The result
of space shifting applied to our example is illustrated in figure 2.b.

FIG. 2: Spatial shifting of trajectories

2.5 Spatio-temporal Douglas & Peucker filter

Once the spatial shifting is done, in order to optimize the compu-
tation time, trajectories can be both indexed according to a spatio-
temporal method (Rasetic et al., 2005) and simplified using a fil-
ter initially proposed by Douglas & Peucker (Douglas and Peu-
cker, 1973). Several different algorithms are based on this work.
Some of them have been compared by Wu (Wu and Pelot, 2007).
In this study, a spatio-temporal Douglas & Peucker filter (Ber-
trand et al., 2007, Cao et al., 2006, Meratnia and de By, 2004) is
used. The goal of this filter is to retain only significant positions
of a trajectory while keeping information about speed or heading
changes. To do this, the greatest distance dmax between each po-
sitions Pi of the trajectory and their spatio-temporal projections
P ′

i on the line between the starting positions Pd and arrival Pa is
calculated. If this distance d between Pi and P ′

i exceeds a thre-
shold, the farthest position Pmax is retained. The trajectory is
then split at that position (Pmax) and the algorithm is recursively
applied to both trajectory subparts. If the distance d is smaller
than the threshold, only positions Pd and Pa are kept. This algo-
rithm also filters inaccuracies of measuring devices (Bertrand et
al., 2007).

2.6 Position normalized relative timestamps computation

In order to ease distance and time comparison between trajec-
tories, a relative timestamp is computed for each position of a
trajectory. Timestamps of positions are very useful to compute
speed and order each position within a trajectory. Initial posi-
tions of trajectories are all set up with an absolute timestamp
(tA). In order to compare these trajectories, a new relative times-
tamp (tR) is computed for each position. This relative timestamp
stands for the interval of time since the starting position of the
trajectory. Thereby, every starting position of the trajectories of
the HGTAIT have a null relative timestamp (t0 = 0). Finally, to
avoid spatial distortions introduced by slightly different speeds of
mobile objects of theHGTAIT , timestamps of all the trajectories
of the HGTAIT must be normalized. This relative normalized ti-
mestamp tNR stands for the normalized time elapsed since the
starting position of a trajectory. To compute this relative norma-
lized timestamp, first of all, the median duration Dmed of the
HGTAIT is calculated. The choice of the median duration is less
disturbed by outliers. Using this duration, a normalization pro-
cess is applied to all trajectory positions so that each trajectory
begins at a time t0 = 0 and ends at the same relative normalized
time tm = t0 + Dmed.

3 STATISTICAL ANALYSIS OF TRAJECTORIES

Once the HGTAIT has been extracted and filtered, it is worthw-
hile to perform a statistical analysis of this group of trajectories.
This statistical analysis aims at qualifying positions and trajec-
tories of moving objects following an itinerary using spatial and
temporal criteria. To do this, spatio-temporal patterns are defined
to compare positions and trajectories of a moving object with pat-
terns which stand for normal behaviour of mobile objects of the
same type following the same itinerary.

3.1 Main route computation

First of all, a main route followed by most of the trajectories of
the HGTAIT is computed by statistical analysis. The first stage
of this process consists in setting up a new relative normalized ti-
mestamp for each position of each trajectory of the HGTAIT as
explained in section 2.6. Then, for each position of each trajectory
of the HGTAIT , positions of other trajectories of the HGTAIT

are interpolated using their normalized time. This second step of
the main route computation generates a subset of positions at each
normalized time (note that only meaningful positions kept by the
spatio-temporal Douglas & Peucker algorithm are used, so that
the computation process is only applied on subparts of trajecto-
ries where mobile object behaviour changes). Median positions
are computed at each normalized time using median values of co-
ordinates (latitudes and longitudes) of each position subset. Then,
these computed median positions are ordered according to their
normalized time to create the main route of the itinerary. Finally,
this main route is also filtered using the Spatio-temporal Douglas
& Peucker algorithm (section 2.5). Algorithm 1 summarizes the
main route computation steps.

Algorithm 1 Main route computation
Require:

1: for each trajectory Tr of the HGTAIT do
2: Delete erroneous trajectories
3: Spatial shifting of starting and ending positions
4: Douglas Peucker ST(Trajectory Tr)
5: Temporal normalization using median duration tm
6: end for
7: Algorithm Main Route Computation(HGTAIT )
8: for each trajectory Tri of the HGTAIT do
9: for each position Pi of Tri do

10: Let tni be the normalized time of Pi

11: for each other trajectoiries Trj of the HGTAIT do
12: Interpolate the positions Pj at normalized time tni

13: Add Pj to the subset of positions EPi

14: end for
15: Compute median position Pmed of EPi

16: Add Pmed to the main routeRIT at normalized time tni

17: end for
18: end for
19: return Douglas Peucker ST(Trajectory RIT )

3.2 Spatial channel computation

As the studied mobile objects move in an open area, some of
them can move away from the main route. These slight devia-
tions must be distinguished from outliers. The goal of the spatial
channel computation is to detect outlier positions of trajectories
that spread out of this spatial channel. These unusual deviations
affect a small subset of positions within some trajectories of the
HGTAIT . In order to distinguish normal and unusual trajecto-
ries, a spatial channel is calculated using a statistical analysis of
all the trajectories of the HGTAIT compared to the main route.
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Positions of all trajectories of the HGTAIT are ordered by dis-
tance and side to the main route using crossing positions between
trajectories of theHGTAIT and the line perpendicular to the hea-
ding (LPH) of each previously calculated position of the main
route. On each side of the main route, the positions of trajectories
which intersect with the LPH are ordered by distance from the
main route’s position. The sorted position corresponding to the
ninth decile of each side of the main route is used to create the
border of the channel. Positions outside of this spatial limit are
considered as outliers. The choice of this statistical decile pro-
vides a channel within which most of the mobile objects follo-
wing this itinerary move along. Algorithm 2 summarizes the dif-
ferent steps used to calculate the spatial channel (SC).

Algorithm 2 Spatial channel computation
1: Algorithm Spatial Channel Computation(HGTAIT )
2: for each position Pi of the main route RIT do
3: Compute line [LPH] perpendicular to the heading of Pi

4: for each trajectory Trj of the HGTAIT do
5: Compute crossing position P ′

i between Trj and [LPH]
6: if P ′

i is right Pi then
7: Store P ′

i in array Aright

8: else
9: Store P ′

i in array Aleft

10: end if
11: end for
12: Sort Aright and Aleft by distance to Pi

13: Pfiright = ninth decile of Aright

14: Pfileft = ninth decile of Aleft

15: Set Pfiright and Pfileft timestamp to Pi one
16: Add Pfiright to the right border Trright of spatial chan-

nel
17: Add Pfileft to the left border Trleft of spatial channel
18: end for

3.3 Spatio-temporal zones calculation

Given that a moving object is travelling in the spatial channel of
a main route, one other interesting element is to know wheter this
object is on time compared to the main route. As for positions,
temporal zones can be computed in order to temporally qualify
the mobile object’s position (ahead of schedule, on time, late).

FIG. 3: Spatio-temporal zone at a relative time

To generate these temporal zones, once the spatial channel is
computed, the trajectories outside the spatial channel are first re-
moved from the HGTAIT . Then, for each position of the main
route PRi (represented by a white triangle on figure 3) using its
relative time tPRi, all other positions of the HGTAIT are inter-
polated. These positions are converted into a new polar system
using PRi as pole and PRi’s heading as polar axis. This conver-
sion defines a total order for each position subset according to

distance. Distances rij and azimuth θij of each interpolated posi-
tion from the HGTAIT are then divided into two subsets accor-
ding to the azimuth ((θij > 90˚∧ θij <= 270˚)→ Pjdelayed)
and then sorted by distance (white dots for early positions and
grey dots for late ones as shown in figure 3). Finally the positions
whose distances rij match the ninth decile of each subset (PLi for
late positions and PEi for early positions) are selected (shown as
black squares in figure 3).Then, the projected positions of PEi

and PLi on the main route are computed (P ′
Ei and P ′

Li). The
crossing positions (white crosses in figure 3) between the spa-
tial channel and the lines perpendicular to P ′

Ei and P ′
Li are used

to create the temporal normality zone ZN for each tPRi. Spatial
channel and temporal zones at each relative time can be combi-
ned to create the spatio-temporal channel which is then stored in
the knowldege database. As new positions are frequently acqui-
red by the system, this spatio-temporal channel can be improved
by updating it periodically.

Algorithm 3 Temporal zones computation
Require:

1: Let RIT be the main route of the HGTAIT

2: Let SC be the spatial channel of the HGTAIT

3: Algorithm Temporal Zone Computation(HGTAIT )
4: Remove every trajectory of the HGTAIT which lies out of
SC

5: for each position PRi of the main route RIT do
6: Let tPRi be the relative time of Pi

7: Let HRi be the heading of Pi

8: Change the polar system using PRi as pole and HRi as
polar axis

9: for each trajectory Trj of the HGTAIT do
10: Interpolate position Pj of Trj at relative time tPRi

11: Compute rij , the distance between the pole and Pj

12: Compute θij , the angle between the polar axis and Pj

13: if (θij > 90˚ ∧ θij <= 270˚) then
14: Store rij in array Alate

15: else
16: Store rij in array Aearly

17: end if
18: Sort Alate and Aearly by distance rij to Pi

19: rlate = ninth decile of Alate

20: rearly = ninth decile of Aearly

21: Store rlate and rearly for relative time tPRi

22: Using PRi speed, rlate and rearly , interpolate positions
on SC and RIT

23: Create normality zone ZN using interpolated positions
24: end for
25: end for

4 EXPERIMENT

This section presents the results of the process exposed in pre-
vious sections applied to a maritime context. The shipping freight
traffic is constantly increasing and traffic surveillance operators
can have to visualy monitor up to 250 ships displayed simulta-
neously on theirs displays. For safety purposes, ships are fited out
with Automatic Identification System (AIS) to track ships’ posi-
tions in real time using GPS receivers and VHF transmission sys-
tems (IMO, 2007). The spatio-temporal database studied in this
example contains 1005 ships and 4 821 447 positions stored since
May 2007 in the Brest area (Iroise sea). This spatio-temporal da-
tabase works using a PostgreSQL/PostGIS server. Each position
is associated to a ship whose features are also stored in this data-
base.
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FIG. 4: Main route and spatial channel computation, position cloud at same normalized time

Using the STDB spatial extraction tools, ship trajectories can
be distinguished and extracted from this database. As explained
in section 2.1, a spatial zone (Z) can be defined and represented
by geometric areas (Z.g) of points of interest. In a place where
mobile objects usually stop or interact, where traffic is limited by
the geography or by regulations, a zone is defined. As the mobile
object move in an open space, there is no forced network bet-
ween these zones (except for limited traffic due to regulation or
geography), the space is a wide open area which allows ships to
navigate from one place to another using the most effective path.
A position Po is included into an area Zi if its coordinates are
included into the geometrical surface Zi.g of the zone. The geo-
metry of the zone must also be large enough to include at least
one position of each trajectory that cross this zone (otherwise in-
terpolated positions may have to be calculated). The zone graph
of our example is depicted in figure 5 where labeled white circles
stands for zones of interest.

FIG. 5: Zone graph of the STDB

Thus, the itinerary shown in Figure 5 by the arc (A, F) (Brest
Arsenal → Lanvéoc Naval Academy) of the zone graph GZ is
different from the one represented by the string ( A, E, F) (Brest
Arsenal → Ile Longue → Lanvéoc Naval Academy). The zone
graph is incomplete and directed, all its vertices are not connected
directly with each other by an edge and the way back of the itine-
rary may be different as navigation rules can set distinct channels
in order to avoid collisions. Once set up, this zone graph is saved
in the knowledge database (figure 1 step 5). The numerous dots
shown in figure 5 represent positions of ships. The main routes
used by most of the ships are visually noticeable as dense areas.

Once the graph zone established, an homogeneous group of tra-
jectories is extracted from the STDB as explained in section 2.2.
The first selection criterion used to extract this set of trajecto-
ries is the type of the mobile object. Applied to our maritime
example, only ”passenger ships” are selected (30 vessels out of
1005) then the data mining extraction method identified 554 tra-
jectories of passenger ships following the itinerary ”Brest Arse-
nal ⇒ Lanvéoc Naval Academy” represented by the arc (A, F)

on figure 5. Next, trajectories containing important communica-
tion loss compared to normal transmission rate (No position for 1
minute for the AIS system), erroneous positions or transmission
gaps are discarded from theHGTAIT as explained in section 2.3.
Among 554 trajectories, 506 trajectories were kept after filtering
out erroneous trajectories, which is enough to apply statistical
analysis to this set of trajectories. The starting and ending posi-
tion of the remaining trajectories are spatialy shifted as exposed
in section 2.4. This spatial shifting avoid a maximum 200-meter
distance between farthest starting positions and the projected one
on the starting line as shown on figure 2.a. The spatio-temporal
Douglas & Peucker filter exposed in section 2.5 applied to the
HGTAIT reduced the number of positions from 104 201 to 16
110 (compression rate of 84.54 %) for a threshold of 10 m (pre-
cision of a GPS device).

The extracted and filtered HGTAIT composed of 506 trajecto-
ries plotted in black in figure 4.a is then used to compute spatio-
temporal patterns presented in sections 3.1 and 3.2. Looking at
figure 4.a visually shows that same-type mobile objects with the
same itinerary globally follow a main route. The cloud of dark
dots shown in figure 4.b represents the subset of positions at a
same normalized time, the large white dot indicates the median
position of the whole subset. All these median positions orde-
red by theirs normalized time compose the main route plotted in
white in figure 4.

Once the main route calculated, the spatio temporal channel can
be statisticaly computed using algorithms 2 and 3 presented in
sections 3.2 and 3.3. Figure 4.c shows the calculated borders of
the spatial channel applied to our example. Thus, unusual po-
sitions outside the spatial channel can be highlighted for each
HGTAIT . The distances between the main route and the spatial
channel borders (right and left) are different. Indeed, it is easier
for a moving object to deviate outward than to get closer to an
obstacle in an open space area. Similarly, the width of the chan-
nel provides information about the trajectories spreading from the
main route. In our example, this spreading is narrower at the start,
the end and in the curves of the itinerary. However, in straight
parts of trajectories, spatial channel width increases. The choice
of the statistical decile used to compute the spatio-temporal chan-
nel gives a more or less wide spread of this channel within which
most of the mobile objects following this itinerary move along.

Finaly, as shown in Figure 3, positions of the trajectory of a pas-
senger ship going from Brest to Lanvéoc can be qualified using
the five spatio-temporal zones previously-defined in section 3.3.
Only 30 positions are displayed in order to keep Figure 3 rea-
dable. Positions of the ship are spatially and temporally qualified
in order to alert the traffic operator about the unusual behaviour of
a ship. The operator can then focus on a few ships within a huge
set of vessels cruising in a wide area. Note that the distances bet-
ween the main route’s position and the early and late zone borders
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are quite different as it is more frequent for a moving object to be
delayed than to be ahead of schedule. Moreover, a position out-
side the spatial channel cannot be temporally qualified as early or
late, indeed the moving object moving away from the route can
either take a shortcut or make a detour.

5 DISCUSSIONS

The novelty of the method is the use of meta-knowledge
(HGTAIT , main route, spatio-temporal channels) to describe the
behaviour of mobile objects following an itinerary on both spatial
and temporal criteria. Moreover, these meta-data could be used to
qualify new mobile object’s positions in real time. The graph zone
used to define arc of itineraries can bridge this study to the net-
work based approach of trajectory analysis. However, matching a
position to an itinerary in real time remains a complex problem to
solve as some arcs of an itinerary can be shared. Previous position
of the mobile object coupled with its destination can facilitate the
matching to an itinerary but every time a new position is obtai-
ned, this matching may change. Tracks for future research include
extending our analysis to sections of trajectories. By analogy to
the zone graph, it would be interesting to split trajectories into
subsections to enhance analysis of the behaviour of a ship on a
subpart of the trajectory sharing common properties (speed, hea-
ding, rate of turn...). Sections of trajectories could be compared to
the main routes. Furthermore, computation time could be decrea-
sed by filtering the wholeBDST using the Douglas and Peucker
spatio-temporal algorithm and adding a trajectory index. Indeed,
50,04% of CPU was used to extract and filter the HGTAIT . Fi-
nally, the main selection criteria used in this analysis is the type
of the ship which does not take into account the environment of
the ship (such as the tide, wind or season).

6 CONCLUSION

This article focused on the specific problem of outlier detection
in mobile object displacements in an open area. It was applied
to a maritime context as shown in our case study based on an
important dataset. Once the notion of itinerary and trajectory fol-
lowing an arc of an itinerary formaly defined, a general process
to qualify mobile object behaviour based on spatio-temporal data
mining was defined as previously exposed in figure 1. First of
all, position data are acquired and a knowledge database is set
up with the zone graph. Then, trajectories of same-kind mobile
objects are clustered according to arcs of itineraries. A statisti-
cal analysis of each cluster allows to define the main route and
spatio-temporal channel of this cluster. These meta-data are sto-
red in the knowledge database. Each new position can be spatially
and temporally qualifyed. These processes have been tested on
an important dataset applied to the maritime context in different
area. Thus, statistical analysis of aGHTAIT gives us information
about mobile object’s behaviour. Thanks to the spatio-temporal
channels, positions of a trajectory can be qualified on both spatial
and temporal criteria. It could be worthwhile to validate this study
by providing these tools to traffic surveillance operators who can
monitor up to 250 ships displayed simultaneously in order to de-
crease the operator’s cognitive load. However, real time analysis
tools have not yet been implemented to this prototype.

RÉFÉRENCES

Aggarwal, C. C. and Yu, P. S., 2001. Outlier detection for high
dimensional data. SIGMOD 30(2), pp. 37–46.
Barnett, V. and Lewis, T., 1994. Outliers in Statistical Data. John
Wiley & Sons New York.

Baud, O., El-Bied, Y., Honore, N. and Taupin, O., 2007. Tra-
jectory comparison for civil aircraft. In : Aerospace Conference,
2007 IEEE, pp. 1–9.
Bertrand, F., Bouju, A., Claramunt, C., Devogele, T. and Ray,
C., 2007. Web and Wireless Geographical Information Systems.
Lecture Notes in Computer Science, Vol. 4857, Springer Berlin /
Heidelberg, chapter Web Architecture for Monitoring and Visua-
lizing Mobile Objects in Maritime Contexts, pp. 94–105.
Cao, H., Wolfson, O. and Trajcevski, G., 2006. Spatio temporal
data reduction with deterministic error bounds. VLDB Journal
15, pp. 221–228.
D’Auria, M., Nanni, M. and Pedreschi, D., 2006. Time-focused
density-based clustering of trajectories of moving objects. Jour-
nal of Intelligent Information Systems 27(3), pp. 267–289.
Douglas, D. H. and Peucker, T. K., 1973. Algorithms for the
reduction of the number of points required to represent a digitized
line or its caricature. Cartographica : The International Journal
for Geographic Information and Geovisualization 10, pp. 112–
122.
Giannotti, F., Nanni, M., Pinelli, F. and Pedreschi, D., 2007. Tra-
jectory pattern mining. In : KDD ’07 : Proceedings of the 13th
ACM SIGKDD international conference on Knowledge disco-
very and data mining, ACM, New York, NY, USA, pp. 330–339.
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