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ABSTRACT:

This paper presents a method to calibrate a camera from panoramas. Camera calibration using panoramas has two main advantages:
on the one hand it requires neither ground control points or calibration patterns and on the other hand the estimation of intrinsic and
distortion parameters is of higher quality due to the loop constraint and to a decorrelation of tied parameters due to the fixed perspective

center.

The paper is organised as follow. The first part presents the acquisition process and our mathematical estimation framework. The
second part explores with simulated data sets the impact of noisy measures, of geometry of acquisition and of unmodelled parallaxes on
the calibration results. A comparison with a traditional calibration method (i.e by using a 3D target network) is then studied. The final
section presents results in a real case and compares the results obtained with our panorama approach against the classical calibration.

The results are very promising.
INTRODUCTION

In photogrammetric surveys, the camera calibration is most of
the time performed prior to the survey and the extrinsic param-
eters of the poses of the survey are obtained by bundle adjust-
ment. A “classical” photogrammetric camera calibration meth-
ods (Tsai, 1986, Zhang, 2000) consists in taking images of a
topometrically surveyed 2D or 3D target network, in measuring
manually or automatically the positions of the projection of the
targets (the observations) in image space and finally in estimating
the set of parameters of a mathematical projection model (usu-
ally the collinearity equation) minimising the distance in image
space between the observations and the projection of the corre-
sponding targets given the set of parameters. In “classical” sur-
veys where images are parallel to the surfaces of the objects or
landscapes to be surveyed, the extrinsic parameters determined
through a bundle adjustment can absorb/compensate errors of the
camera calibration. In image sets with loops, like in panoramas
or when turning around objects, these errors can unfortunately
not be compensated. In order to perform a better estimation and
decorrelation of intrinsic (and distortion parameters) and extrinsic
parameters, some other techniques have been developed using ro-
tating images (Hartley, 1994), or using panoramas (Ramalingam
et al., 2010). Some woks using the same acquisition framework
already exist ((Agapito et al., 2001, Tordoff and Murray, 2004)).
However the distortion modeling is different than ours.

Our calibration approach consists in carrying out a self-calibration
from panoramas, i.e. to estimate intrinsic and extrinsic parame-
ters at the same time while closing a loop and with a fixed per-
spective center to decorrelate some tied parameters and limit the
number of unknowns to estimate (we only need to estimate a ro-
tation between our different images). This approach has many
advantages: it is fully automatic, it does not need a qualified op-
erator to acquire images with a ’good geometry” (with targets in
the corner, etc.), it does not need any ground control point and
calibration patterns (any detail or texture of a scene becomes a
tie point) and it is thus ultra-portable. Indeed, the calibration can
be realised close to the survey thus for example in the same ther-
mal conditions knowing that temperature has a relatively strong
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impact on the intrinsic and the distortion parameters.

Our panoramas are acquired with a low cost motorised pan-tilt
device thus with a gross angular accuracy (around 0.1) which is
insufficient to measure the perspective bundle in a direct way (ray
by ray by observing a point while turning the camera) but which
is sufficient enough to provide initial solutions for rotations and
limit the search space for homologous points.

Our work present a method to calibrate camera without ground
point. One of the main advantage to work in a panoramic geom-
etry is that we only needs to estimate a rotation between images.
Another interesting particularity is that it requires neither ground
points nor geometric information extracted from the images.

We will first start by presenting our acquisition process, our ge-
ometric camera model, and our mathematical estimation frame-
work (Section 1). Then we will present some experiments with
synthetic data to study the influence of noise on the estimation
of intrinsic parameters and distortion (Section 2). A comparison
with a “’classical” calibration with ground control points will then
be presented in Section 3. Finally, Section 4 presents results on a
real dataset.

1 OUR METHODOLOGY

In this section we present our calibration framework. We first
discuss the acquisition process and the matching of tie points be-
tween images. Then, we present our camera geometrical model
and introduce the mathematical bundle adjustment framework in
which the calibration is embedded, and we explain how to solve
it.

1.1 Acquisition process

Our pan-tilt device which is controlled by a computer is presented
on Fig. 1. Mechanically, it provides two rotation axes (from left
to right and top to bottom) and can support any reasonable weight
camera. In our framework, images are taken with an overlap ra-
tio around 50% in order to have enough measures of homologous
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points on the neighbouring images. For instance, for a camera
with a field of 90°, there are 8 images at the equator, 6 images at
=+ 45° and one at each pole, a total of 22 images.

Figure 1: The panoramic images acquisition system. It can sup-
port any kind of camera.

For our calibration process, we need to have all the images ac-
quired from the same point of view. To minimize manually the
parallax due to the mounting of the camera on the acquisition de-
vice, one takes a pair of rotated images with near and far objects.
If the two objects remain in the same order in both images, there
is no or only a small parallax. If the order is changed, there is
some parallax. Fig. 2 shows two images taken with our system.

Figure 2: Rotation with a decentered camera around pan-tilt axes

We can see that the order of the wire in the foreground and the
TV antenna changes between the two images. Thus, the position
of the camera on the device is shifted manually until this effect
disappears.

1.2 Description of our matching process

To compute homologous points, you can use different strategies.
For example by extracting and matching interest points such as
SIFT point (Lowe, 2004). We have used also a matching of ho-
mologous points in two neighbouring images based on anony-
mous features (Craciun et al., 2009), following a two steps ap-
proach. In a similar way to the process describe in (Coorg and
Teller, 2000), the first step of our pose estimation method consists
in finding for each pair of overlapping images the rotation which
optimises the Normalised Cross Correlation similarity score com-
puted on the overlap of the first image with a rigid transform of
the second image to put it in the geometry of the first. The opti-
misation is performed in a greedy way within a multi-resolution
framework.

In our case, the acquisition system directly gives an initial solu-
tion and bounds for the rotation. Then, we use the refined rota-
tion to initialise the matching of anonymous points, i.e. points
on a grid covering the overlap, based on the similarity of image
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patches centred at the considered points. Indeed, these homolo-
gous points are necessary to feed a photogrammetric bundle ad-
justment to estimate accurately the relative pose of all the images
within the panorama. The main advantage of this method is that
it finds corresponding points in any situation, even if the surface
is uniform or regular. The second advantage is that it chooses the
number of corresponding points per images as well as the repar-
tition of these points.

1.3 Our mathematical calibration model

Most calibration techniques try to minimize the residuals in the
image space of known points, or geometrical characteristics ex-
tracted from images. In our case, we only want to minimize the
angle between the corresponding photogrammetric rays of ho-
mologous points directly in panoramic space (see eq. 1). This
explains why our process does not require ground points.

Each image is fixed in the panoramic space by a rotation noted
R; . Our perspective model contains the Principal Point of Au-
tocollimation (the intersection of the focal plane with the optical
axis) of coordinates (cppa,lppa) and the focal length denoted

1.

1.3.1 Ray in 3D space To transform a point (c,!) in image
coordinates to a ray (z',y’,2') in panoramic space, we use a
function g which depends on R; p, f and (cppa,lppa) (see
eq. 1).

T
x/ R@',p y
, z
ge)=| v | = )
2 Vot +y?+z
where:
r = C—CpPA
y = lIlppa—1
z = —f

1.3.2 Distortion modeling We consider an additive radial dis-
tortion model which amplitude is modelled by a polynomial of
the form p(r) = a.r® + b.r® 4 c.r” where r is the radius centred
on the Principal Point of Symmetry (cpps,lpps) which is dif-
ferent from the PPA.

Eq. 2 shows how to compute a corrected measure from a real
measure, where (cp,ls) is the measure directly taken in image
space, and (ce, l¢) is the corrected measurement:

r= \/(Cb —cpps)?+ (Iy — lpps)?
dr = ar®> + br* + or®
ce =cp+ (v — cpps)dr }

le=Ul+ (I —lpps)dr
In this process, we must ensure that the model is not correlated
with intrinsic parameters. For example, a model of purely linear
radial distortion shows that an increase of the focal length has
the same effect as reducing the coefficient of distortion. The sys-
tem thus cannot converge or converges to a mathematical minima
which is physically incorrect.

@

1.4 System to solve

To compute the pose of images in a panorama and calibrate a
camera, one must find a set of parameters: rotation of each image
in the panoramic system (R1 p, - - - , Rn,p) and intrinsic parame-
ters (f and the PPA image coordinates (cppa,lppa)). This can
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be achieved by minimising eq. 3:

N

argmin (Z (gi (c;1) = g5 (e, 1) )2>

Ri p-Rp p.f PPA e=0

3

where:

e N is the number of couples of homologous points

e fi(c,l) (resp. f;(c,1)) is the function defined in eq 1 ap-
plied to image ¢ (resp. j).

Of course, if there is some distortion, we must also find the pa-
rameters of the distortion function

C)

The cost function is minimized with a least squares optimization.
Indeed, we are in a favourable case, since we can eliminate out-
liers using our initial solution provided by the pan-tilt system.
As outliers are the main drawback of this kind of optimization,
this choice is suitable for our application. Furthermore, as the
calibration process does not need to be performed often, compu-
tation time is a minor concern.

For example, with 3 images and some homologous points be-
tween images {1, 2}, {2, 3} and {1, 3}, the system is defined by
the matrix A with the unknown X in eq 5.

h=gi(cl)—gj(cl)

d(CPPSlePS)K’wbyC(ClN Ih) = (067 lc)
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of of of
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on on AR
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The cost function defined by eq. 3 leads to solve the system of
eq. 6.

Apn X, =0 (6)
In eq. 6, n denotes the iteration index. Solving this system is thus
done iteratively using a least squares approach. For the first it-
eration (n = 0), we use a rough estimate of the parameters: f
can take any arbitrary value, PPS and PPA are initialized at the
center of the image, distortion coefficients are null and rotations
are given by the pan-tilt system. The convergence of the min-
imisation process is detected when there are no changes of the
parameters between two consecutive iterations.
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2 EXPERIMENTS WITH SYNTHETIC DATA
2.1 Simulation protocol

To validate our calibration process regardless of possible mount-
ing errors on the acquisition system, we worked with synthetic
data. This provides a ground truth to evaluate the calibration pa-
rameters that we have computed with our minimisation scheme.
We have thus simulated a 3000 x2000 pixels camera' with 2 dif-
ferent focal lengths:

e a 1000 pixels short focal length (90° per 112°).
e a 3000 pixels long focal length (36° per 53°).

A points dataset is then created by regularly sampling points on
a 10 meters radius sphere (see Fig. 3). Those sampled points are
then back-projected in all the images to simulate a real acquisi-
tion (Ci7 lz)

The camera is positioned at the center of the sphere to simulate

Figure 3: Sample points on sphere

images. We used a 50% overlap in each dimension. It leads to an
angle of 61° between horizontal images and 45° between vertical

images (see Fig. 4).

Figure 4: Illustration of the simulation protocol with nine images
(in green) and the camera (in white).

@]

In all experiments presented in this section, we have added some
noise following a normal distribution. The noise is centred on
the true measure and its standard deviation is chosen in the set
{0.3;0.5;1.0; 2.0} pixels.

2.2 Intrinsic parameters

We have first examined the influence of noise on the estimation
of the focal length and of the PPA. The unknowns to be estimated
are given by eq.7:

[ Rip,.. ©)

Yeppa,lppa) = (1470,980), (cpps,lpps) = (1530,1020)
anda =10"8,b=10"1%,¢c=10"2!

s Rnp, ficppa,lppa ]
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noise (in pixel)
0.3 0.5 1.0 2.0
— | Af 0.004 | 0.006 | 0.005 | 0.04
g Acppa || 0.010 | 0.020 | 0.001 | 0.20
O [ Alppa 0.022 | 0.036 | 0.014 | 0.128
L Af 0.013 | 0.022 | 0.052 | 0.021
g Acppa || 0.046 | 0.077 | 0.215 | 0.308
O [ Alppa 0.166 | 0.276 | 0.174 | 0.348

Table 1: Influence of noise on the intrinsic parameters on simu-
lated data.

Tab. 1 shows the results that we obtained in our experiments.
They show that our method can efficiently estimate the intrin-
sic parameters of the camera and that the noise only has a very
slight influence on the calibration process. The results are quite
similar for both short and long focal lengths. Even if there is an
important difference between the results for the two cameras, the
calibration can be considered very good since the parameters are
estimated with an error bounded by 0.2 pixel.

2.3 Distortion function

Most of the cameras have a radial distortion which can be quite
well modelled by a polynomial (see eq. 2). The unknowns to be
estimated are thus:

[ Rl,p7 ceey RnJN f7 CPPA7lPPA,CPPS,lPPS7a,b7C ] (8)

Tab. 2 summarizes the results of the tests that were conducted for
Camera 1. The intrinsic parameters (f and PPA) are very close
to real values (about 0.1 pixel with 1 pixel noise). The error on
the distortion parameters between the distortion function and the
estimated model is around 1 pixel in the image corners for a noise
of 1 pixel.

noise (in pixel)

0.3 0.5 1.0 2.0
Af 0.01 | 0.02 | 0.03 | 0.63
Acppa 0.04 | 0.09 | 0.12 | 0.21
Alppa 0.06 | 0.11 | 0.09 | 0.14
A cpps 1.27 | 2.36 | 2.64 | 9.18
Alpps 1.59 | 2.67 | 3.75 | 0.70
Apizers (image border) || 0.15 | 0.23 | 1.08 | 4.7

Table 2: Influence of noise on the intrinsic parameters and distor-
tion parameters on simulated data (camera with f=1000).

Tab. 3 summarizes the results for Camera 2. We can note that
the intrinsic parameters (f and PPA) are very close to real val-
ues. The error on the distortion parameters between the distortion
function and the estimated model is around 0.5 pixel in the image
corners for a noise of 1 pixel.

2.4 Influence of parallax

To study the influence of the the parallax, we have simulated a
failure in the position of the camera nodal point compared of the
center of the pan-tilt system. The magnitude of this defect is
in the range [—5; 5] centimetres on each of the 3 X, Y and Z
components. Fig. 5, 6 and 7 represent the variations of f, cppa
and [ppa when X, Y or Z evolve. These results are just for
Camera 2.

noise (in pixel)

0.3 0.5 1.0 2.0
Af 0.07 | 0.11 | 0.02 | 091
Acppa 0.02 | 0.04 | 047 | 1.80
Alppa 0.68 | 1.14 | 1.59 | 2.96
A cpps 0.04 | 0.08 | 0.52 | 3.24
Alpps 1.39 | 2.33 | 3.81 | 6.98
Apizers (image border) || 0.14 | 0.24 | 0.48 | 0.72

Table 3: Influence of noise on the intrinsic parameters and distor-
tion parameters on simulated data (camera with f=3000).
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Figure 7: f(Z),cppra(Z),lppa(Z)

Af | Acppa | Alppa
Camera 1 min -9.19 -8.97 -6.57
max 7.39 8.61 8.10
Camera 2 min -1.18 -1.23 -1.03
max 1.18 1.09 1.26

Table 4: Influence of parallax on the intrinsic parameters on sim-
ulated data.

When we vary the parallax on the 3 axes simultaneously, we get
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errors that are reported in tab 4.

Through these experiments, we find that over the length is long,
at least the parallax effect on the calibration.

2.5 Conclusion

In the various tests that we have performed, we have found that
the calibration of a camera through a panorama acquisition pro-
cess is relatively stable and reliable. We will now compare our
method with a traditional calibration method.

3 COMPARISON WITH A TRADITIONAL METHOD

To evaluate our algorithm, we have compared it with a more tra-
ditional method on the same simulated data. In this section, the
camera is calibrated with the same set of observations by a tra-
ditional method by estimating the parameters R and S (respec-
tively rotation and translation) for each image by using points on
the sphere as ground control points noted M. The cost function to
minimize is:

( ! ) - (( nr )* O 1R~ s>> ©

3.1 Influence on parameters

Cameral Tab. 5 shows the difference between the true param-
eter and the calculated parameters. There is no significant differ-
ence between intrinsic parameters and distortion parameters for
the calibration of a short focal camera.

noise (in pixel)

0.3 0.5 1.0 2.0
Af 0.04 | 0.07 | 0.16 | 1.,55
Acppa 0.09 | 0.14 | 0.27 | 0.95
Alppa 0.34 | 0.54 | 0.89 | 1593
A cpps 048 | 0.84 | 1.74 | 3.84
Alpps 092 | 1.6 | 3.15| 054
Apizels (image border) || 0.83 | 1.05 | 1.68 | 34.4

Table 5: Influence of noise on the intrinsic parameters and distor-
tion parameters

Tab. 6 consolidates the results obtained with our method and with
the traditional method. Our method is more accurate in the esti-
mation of intrinsic parameters than the traditional method. It is
more difficult to compare the estimation of distortion parameters.

noise (in pixel)

03]05]10]20
f + |+ + 1 +
ppa + + + +
distortion || + + + +

Table 6: Comparison between estimation with our method and
the traditional method. A "+” (resp. ”-”) indicates that our
method is more (resp. less) accurate than the traditional method.

noise (in pixel)
0.3 0.5 1.0
Af 31.88 | 47.48 | 71.81
Acppa 1.35 2.09 3.39
Alppa 221 3.59 6.75
A cpps 2.46 4.33 11.74
Alpps 1.47 2.46 4.99
Apizels (image border) 4.23 6.47 10.21

Table 7: Influence of noise on the intrinsic parameters and distor-
tion parameters

Camera 2 Tab. 7 shows the difference between actual parame-
ters and the estimated parameters. Note that with little noise (0.3
pixel) there is a significant error on intrinsic parameters (1% of
error on the focal). One can note in tab.8 that our method is more
accurate than the traditional method. This table is just a quali-
tative summary but when you take a look on tab.7, you can see
traditional method is not very accurate to calibrate long focal!

noise (in pixel)

03 1]05] 1.0
f + |1+ +
ppa + + +
distortion || + + +

Table 8: Comparison between estimation with our method and
traditional method. See Tab. 6 caption for an explanation.

3.2 Impact on the projection center

The main difference between a traditional calibration method and
our method is that the estimation of the position and rotation of
each image is done separately. This section discusses the differ-
ence between the simulated position of the camera at (0,0,0) and
the position estimated in the calibration process.

Cameral The figure 8 represents the projection centres of each
image after calibration (top view). We found that when increas-
ing the noise, the calculated positions differ from the true posi-
tion. The same behaviour can be noted for the third component
on fig. 9

Position of S (X,Y)
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X (m)

+ 0,3 pixel of noise 0,5 pixel of noise 1,0 pixel of noise

Figure 8: Projection center of images in plan (X,Y) after calibra-
tion and noise on measures

Camera 2 The same behaviour can be observed for the short
and the long focal, but the difference between estimated position
and true position is more important (Fig. 10 and Fig.11).
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Figure 9: Projection center of images in Z after calibration and
noise on measures
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Figure 10: Centres of projection of images in plan (X,Y) after
calibration and noise on measures
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Figure 11: Centres of projection of images in Z after calibration
and noise on measures

3.3 Conclusion

In this section, we exhibited the limits of the polygon based cal-
ibration and the difficulty to estimate the intrinsic and extrinsic
parameters in the same process. The geometry of the panoramic
avoids calculating the position of each image. Furthermore, ge-
ometry of panorama constraint naturally and geometrically intrin-
sic parameters.

4 EXPERIMENTS WITH REAL DATA

After working with simulated data, we have calibrated a real cam-
era. The interest of this acquisition is to validate the convergence
of the process on real data. We also compare our results with a
calibration on a topometrically surveyed network targets.

After a bundle adjustment by estimating only rotation and the
camera calibration obtained on targets network, we have a value
of RMS equal to 0.021. With our method, we have 0.015 RMS,
i.e. 28% better. The focal length difference between two tech-
niques is more important than 18 pixels. The difference between
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2 models can be more than 10 pixels (in the corners). It means
an difference on field of camera of 0.7123° in column and per
0.5989° in line.

Figure 12: Sample of panorama

5 CONCLUSIONS AND FUTURE WORK

This paper has presented a method to calibrate a camera’s intrin-
sic parameters but also to estimate a distortion pattern. We have
shown that this method is not sensitive to noise and it is applica-
ble with both short and long focal. Future work will consist on
looking for more complex and accurate model. We also look for
a framework to estimate the mechanical residual parallax.
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