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ABSTRACT:

In this work, we focus on the mainly detection of buildings.. As input data, we use LIDAR data and multispectral aerial images of  
two different test sites. One is from Zurich airport and the other one is from Vaihingen region close to Stuttgart. Quality assessment  
has been performed  by comparing our results with existing reference data which are generated using commercial photogrammetric  
software and manual stereo measurement.

1. INTRODUCTION

In this work, we focus on the extraction of man-made structures, 
especially buildings  and  secondly  trees  by  combining 
information from aerial images and Lidar data. We applied four 
different methods on two different dataset located at first Zurich 
Airport,  Switzerland  and  secondly  Vaihingen  region  close to 
Stuttgart. The first method is based on DSM/DTM comparison 
in combination with NDVI analysis; in case of lacking DTM, a 
slope based morphological filter has been used to detect all the  
off-terrain  objects  which  include  buildings,  trees  and  other 
objects.  The  second  one  is  a  supervised  multispectral 
classification refined with height information from Lidar data. 
The  third  approach  uses  voids  in  Lidar  DTM  and  NDVI 
classification, while the last method is based on the analysis of 
the density of the raw Lidar  DSM data.  The accuracy of the 
building  extraction  process  was  evaluated  by  comparing  the 
results with reference data and computing the percentage of data 
correctly extracted and the percentage of missing reference data. 
The improvement  of the result  has been performed by taking 
into account the advantages and disadvantages of each method. 
For  extraction  of  3D surfaces,  a  RANSAC method  has  been 
applied  to  find  all  planar  surfaces  which  belong  to  the  roof 
surfaces. Quality assessment has been performed by comparing 
our results with existing vector reference data.

2. PREVIOUS WORK 

Aerial  images and Lidar  data are common sources for  object 
extraction.  In  digital  photogrammetry,  features  of  objects  are 
extracted  using  3D  information  from  image  matching  or 
DSM/DTM  data,  spectral,  textural and  other  information 
sources. Pixel-based classification methods, either supervised or 
unsupervised,  are  mostly used  for  land-cover  and  man-made 
structure detections.  For  the classical methods e.g. minimum-
distance,  parallelepiped  and  maximum  likelihood,  detailed 
information can be found in (Lillesand and Kiefer, 1994).

In  general,  the  major  difficulty  in  using  aerial  images  is  the 
complexity and variability of objects and their form, especially 
in suburban and densely populated urban regions (Weidner and 
Foerstner, 1995).
Regarding  object  extraction  from  LIDAR  data,  it  has  been 
defined as a filtering problem of the DSM (raw or interpolated) 
data by several researches. Some algorithms use raw data (Sohn 
and  Dowman,  2002;  Roggero,  2001;  Axelsson,  2001; 
Vosselman and Maas, 2001; Sithole, 2001; Pfeifer et al., 1998), 
while  others  use  interpolated  data  (Elmqvist  et  al.,  2001; 
Brovelli et al., 2002; Wack and Wimmer, 2002). 

To detect roof structures, surface segmentation techniques are 
needed. The mostly used methods are based on region growing 
(Rabbani et al., 2006; Tovari , 2006; Gorte 2002), model fitting 
such  as  Hough  Transform  (Maas  and  Vosselman,  1999; 
Vosselman, 2004),   RANSAC method (Schnabel et.al, 2007a; 
Schnabel et al., 2007 b; Bretar and Roux, 2005; Tarsha Kurdi 
2007). On the other hand, Sapkota (2008) segments the colored 
point  cloud  data  which  have  color  information  using  Hough 
transform and color information when it is available. 

In general, in order to overcome the limitations of image-based 
and  Lidar-based  techniques,  it  is  of  advantage  to  use  a 
combination  of  these  techniques.  Sohn  and  Dowman  (2007) 
used IKONOS images to find building regions before extracting 
them from Lidar data. Straub (2004) combines information from 
infrared imagery and Lidar data to extract trees. Rottensteiner et 
al.  (2005)  evaluate  a  method  for  building  detection  by  the 
Dempster-Shafer fusion of Lidar data and multispectral images. 
They improved the overall correctness of the results by fusing 
Lidar data with multispectral images. 

Few commercial software packages allow automatic terrain, tree 
and building extraction from Lidar data. In TerraSCAN, a TIN 
is generated and progressively densified, the extraction of off-
terrain points is performed using the angles between points to 
make the TIN facets and the other parameter is the distance to 
nearby  facet  nodes  (Axelsson,  2001).  In  SCOP++,  robust 
methods  operate  on  the  original  data  points  and  allow  the 
simultaneous  elimination  of  off-terrain  points  and  terrain 
surface modelling (Kraus and Pfeifer, 1998). 

In  summary,  most approaches try to find objects using single 
methods.  In  our  strategy,  we use different  methods  using  all 
available  data  with  focus  on  improving  the  results  of  one 
method by exploiting the results from the remaining ones. 

3. INPUT DATA AND PREPROCESSING

We have  two  different  datasets.  One  is  from Zurich  Airport 
area, the other one is from Vaihingen region close to Stuttgart.

3.1 Zurich Airport

For the Zurich Airport area, RGB and CIR images, LIDAR raw 
and interpolated DSM and DTM data and 3D vector data are 
available. Vector data has only been used for quality assessment 
purposes.  The  3D  vector  data  describe  buildings  (including 
airport  parking  buildings  and  airport  trestlework  structures) 
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with  20  cm  vertical  accuracy.  It  has  been  produced  semi-
automatically from stereo aerial  images using the commercial 
software CC-Modeler (Gruen and Wang, 1998).

Analogue  RGB  and  CIR  images  were  acquired  with  the 
characteristics given in Table 1.

Image Data RGB CIR 
Acquisition 
Date 

July 2002 July 2002 

Ground 
Sampling 
Distance 
(GSD) (cm) 

14.5 cm 8.7 cm 

Lidar Data DSM DTM 
Provider Swisstopo Swisstopo 
Type Raw & grid Raw & grid 
Raw point 
density & 
Grid Spacing 

1 pt / 2 sqm & 
2m 

1 pt / 2 sqm & 2m 

Acquisition 
Date 

Feb. 2002 Feb. 2002 

Vector data Only for validation purposes 
Provider Unique Co. 
Horizontal / Vertical 
Accuracy (2 sigma) 

20 / 25 cm 

Table 1. Input data characteristics (Zurich Airport).

The images have been first radiometrically preprocessed (noise 
reduction  and  contrast  enhancement),  then  the  DSM  was 
generated with the software package SAT-PP, developed at the 
Institute of Geodesy and Photogrammetry, ETH Zurich (Zhang, 
2005).The  NIR  band  was  selected  for  DSM generation.  The 
final DSM was generated with 50cm grid spacing.  Using this 
DSM,  CIR  orthoimages  were  produced  with  12.5cm ground 
sampling distance. 

Lidar raw data (DTM-AV and DSM-AV) have been acquired 
with “leaves off” in February 2002 by Swisstopo. The DSM-AV 
point  cloud  includes  all  Lidar  points  (including  points  on 
terrain, tree branches etc.) and has an average point density of 1 
point per 2 m2. The DTM-AV data includes only points on the 
ground, so it has holes at building positions and less density at 
tree positions. The height accuracy (one standard deviation) is 
0.5  m generally,  and  1.5  m at  trees  and  buildings.  The  2m 
spacing grid DSM and DTM were generated by Swisstopo with 
the Terrascan commercial software from the original raw data.

3.2 Vaihingen Region 

For the Vaihingen area, the dataset have been provided from 
DGPF camera evaluation project. We have used ADS-40 digital 
images,  LIDAR  raw  DSM  data  and  an  image  based  DSM 
(Wolff,  2009)  which  has been  generated  using  DMC images 
with SAT-PP and a grid spacing is 20 cm.. In  this dataset, a 
DTM data is  not  available  and  the reference vector  data has 
been  generated  with  2D  manual  measurement  using 
orthophoto..  Input data characteristics can be seen in Table 2.
.

Data GSD Acquisition Date

DMC 8 cm. 24.07.2008 / 06.08.2008
ADS-40 8cm. 06.08.2008
LIDAR 5 pts / m2 21.08.2008

Table 2. Input data characteristics (Vaihingen region).

4. BUILDING DETECTION

Four  different  approaches  have  been  applied  to  exploit  the 
information  contained  in  the  image  and  Lidar  data,  extract 
different objects and finally buildings. The first method is based 
on  DSM/DTM  comparison  in  combination  with  NDVI 
(Normalised Difference Vegetation Index) analysis for building 
detection. For Vaihingen area, while there is no available DTM 
data,  a morphological  filtering approach  (Zhang,  et.al.,2003). 
has  been  applied  to  detect  off-terrain  objects.  The  second 
approach  is  a  supervised  multispectral  classification  refined 
with height information from Lidar data and image-based DSM. 
The  third  method  uses  voids  in  Lidar  DTM  and  NDVI 
classification.  The last method is based on the analysis of the 
density  of  the  raw  DSM  Lidar  data.  The  accuracy  of  the 
building  detection  process  was  evaluated  by  comparing  the 
results with the reference data and computing the percentage of 
data correctly extracted and the percentage of reference data not 
extracted. 

4.1 DSM/DTM and NDVI (Method 1)

The above-ground objects have been detected by subtracting the 
DTM from the DSM, the blobs include mainly buildings and 
trees. As DSM, the surface model generated by SAT-PP and as 
DTM the Lidar DTM grid were used. A standard unsupervised 
(ISODATA) classification of the CIR orthoimage was used to 
compute an NDVI image, containing vegetation (mainly trees 
and  grass).  The  intersection  of  the  nDSM  with  NDVI 
corresponds to trees. By subtracting the resulting trees from the 
blobs, the buildings are obtained. 83% of building class pixels 
were correctly classified, while 7% of the reference data were 
not detected. In the final result, some non-building objects are 
remaining  such  as  aircrafts  and  vehicles.  The  extracted 
buildings are shown in Figure 1.

   
Figure  1.  Building  detection  result  from  method  1.  (Left:  airport 
buildings, Right: residential area).

4.1.1 In Case of Lacking input DTM

In our second dataset, there is no input DTM available, and so 
an filtering approach has been needed for the DSM. 

A progressive morphological filtering method has been used for 
blob detection. For the filtering approach, an input interpolated 
image based DSM data has been used. Then a morphological 
filter  has  been  used  to  detect  the  off-terrain  objects  (Fig.  2) 
which include buildings, trees and other objects. We perform an 
opening  (erosion  +  dilation)  operation  on  the  interpolated 
surface to derive a secondary surface. The elevation difference 
of a grid between the previous and current surface is compared 
to  a  threshold  to  determine  if  the  grid  is  a  non-ground 
measurement.  The  height  difference  threshold  (dh)  has  been 
computed using the predefined maximum terrain slope(s). The 
size of filtering windows (w) has been increased and the derived 
surface has been used as an input for the next operation (Zhang 
et al., 2003). 
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. 

dh is the height difference threshold
dh0 is  the  initial  elevation  difference  threshold  which 
approximates the error of DSM measurements (0.2-0.3 m),
dhmax is the maximum elevation difference threshold (m)
c is the grid size (m)
s is the predefined maximum terrain slope (percent slope)
wi  is  the  filtering  window  size  (in  number  of  cells)  at  ith 
iteration. 

Figure 2.The detected off-terrain objects (mainly buildings and trees) 
after filtering

After  detection  of  the  blobs for  Vaihingen  dataset,  vegetated 
regions  have  been  detected  by unsupervised  classification  of 
NDVI image, after removal of tree regions from the blobs, the 
buildings have been detected (Fig. 3). After the quality analysis 
with the reference data, the correctness has been calculated as 
82%  and the ommision error is 13%. The errors occur mainly 
by the shadow regions on vegetated areas, and on the other the 
reference data may contain errors since it  has been generated 
using ortoimage by manual measurements.

Figure 3.The detected buildings after elimination of the trees

4.2 Supervised classification and use of nDSM (Method 2)

The basic idea of this method is to combine the results from a 
supervised classification with the height information contained 
in the blobs. Supervised classification methods are preferable to 
unsupervised ones, because the target of the project is to detect 
well-defined  standard  target  classes  (airport  buildings,  bare 
ground,  grass,  trees,  roads,  residential  houses,  shadows  etc.), 
present  at  airport  sites. The  training  areas  were  selected 
manually using AOI (Area of Interest) tools within the ERDAS 
Imagine  commercial  software  (Kloer,  1994).  Among  the 
available  image  bands  for  classification  (R,  G  and  B  from 
colour images and NIR, R and G bands from CIR images), only 

the  bands  from  CIR  images  were  used  due  to  their  better 
resolution and the presence of NIR channel (indispensable for 
vegetation  detection).  In  addition,  new synthetic  bands  were 
generated  from  the  selected  channels:  a)  3  images  from 
principal component analysis (PC1, PC2, PC3); b) one image 
from NDVI computation using the NIR-R channels and c) one 
saturation  image  (S)  obtained  by  converting  the  NIR-R-G 
channels in the IHS (Intensity, Hue, Saturation) colour space. 
The  combination  NIR-R-PC1-NDVI  -S  was  selected  for 
classification  using  separability  analysis.  The  maximum 
likelihood  classification  method  was used. As expected  from 
their  low  values  in  the  divergence  matrix,  grass  and  trees, 
airport  buildings and residential  houses,  airport  corridors  and 
bare ground,  airport  buildings  and bare ground could  not  be 
separated. Using the height information from the blobs, airport 
ground and bare ground and roads were fused into  “ground” 
and airport  buildings with residential  houses into “buildings”, 
while trees and grass, as well as buildings and ground could be 
separated. The final classification is shown in Figure 2. 84% of 
the  building  class  is  correctly  classified,  while  all  of  109 
buildings have been detected but not fully, the omission error is 
9% . Aircrafts and vehicles are again mixed with buildings (Fig. 
4). 

  
Figure  4.  Building  detection  result  from  method  2.  (Left:  airport 
buildings, Right: residential area).

For Vaihingen region (Fig. 5), ADS-40 images have been used 
and produced an orthophoto has been generated using existing 
Lidar  DSM,  the  same channels  have  been  selected  as  at  the 
Zurich  airport  region.  After  the  quality  analysis  with  the 
reference data, the correctness has been calculated as 86% and 
the ommision error is 15%.

Figure 5. Building detection result from method 2 (Vaihingen).

4.3 Building detection using density of raw Lidar DTM and 
NDVI (Method 3)

Buildings and other objects, like high or dense trees, vehicles, 
aircrafts, etc. are characterized by null or very low density in the 
DTM  point  cloud.  Using  the  vegetation  class  from  NDVI 
channel as a mask, the areas covered by trees are eliminated,  
while  small  objects  (aircrafts,  vehicles)  are  eliminated  by 
deleting them,  if  their  area is  smaller  than  25m2.  Thus,  only 

dh=s(wi-wi-1)c+dh0 

If dh>dhmax   dh=dhmax
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buildings remain (Figure 6).  85% of building class pixels are 
correctly  classified,  while  108  of  109  buildings  have  been 
detected but not fully extracted, the omission error is 8% .

   
Figure  6.  Building  detection  result  from  method  3.  (Left:  airport 
buildings, Right: residential area).

Since have DTM raw point cloud is not available for Vaihingen 
region, this method could not be applied and analyzed. 

4.4 Building and tree detection from Lidar data (Method 4)

As mentioned above, in the raw DSM data the point density is 
generally much higher at trees than at open terrain or buildings.  
On the other hand, tree areas have low horizontal point density 
in the raw DTM data. We start from regions that are voids or 
have  low density  in  the  raw DTM  (see  Method  3),  for  the 
second dataset, we have used Lidar points in the blobs which 
from the filtering process, and in the next step, we used a search 
window over the raw Lidar DSM data with a size of 5 m x 5 m. 
Neighboring windows have an overlap  of 50%.  The window 
size has a relation with the number of points in the window and 
the number of the points in the search window affects the qual-
ity of the detection  result.  The method uses all  points  in  the 
window and labels them as tree if all  parameters below have 
been met. The size of 25m2 has been agreed to be enough to ex-
tract one single tree. A bigger size may result in wrong detec-
tion  especially  in  areas  where  the  buildings  are  neighboring 
with single trees. 

The points in each search window are projected onto the xz and 
yz planes and divided for each projection in eight equal sub-re-
gions using xmin, xmid, xmax,  zmin zmid1 zmid2 zmid3 zmax as boundary 
values of sub-regions,  with xmid = xmin + 2.5m ,  xmax = xmid + 
2.5m,  zmid1=zmin+(zmax-zmin)/4,  zmid2 =zmin+2*(zmax-zmin)/4, 
zmid3=zmin+3*(zmax-zmin)/4 and similarly for the yz projection. The 
density in the eight sub-regions is computed.  The first step is 
the  detection  of  trees  and  the  second  the subtraction  of tree 
points from all off-terrain points. The parameters have been cal-
culated using tree-masked areas of the raw Lidar DSM data. The 
tree mask has been generated by Method 2. 

The trees have been extracted by four different parameters. The 
first parameter (s) is similarity of surface normal vectors. We as-
sume that the tree points would not fit to a plane. With selection 
of three random points in the search window, the surface normal 
vectors have been calculated n (number of points in search win-
dow) times.  Then,  all  calculated vectors have been compared 
among each other. In case of similar value of compared vectors,  
the  similarity  value  was  increased  by  adding  1.  In  the  tree 
masked points, the parameter (s) has been calculated as smaller 
than 2. The second parameter (vd) is the number of the eight  
sub-regions  which  contain  at  least  one point.  The trees  have 
high Lidar point density vertically. Thus, at trees more sub-re-
gions contain Lidar points. Using the tree mask, we have ob-
served that at least 5 out of the 8 sub-regions contain points. 
Thus, the parameter (vd) has been selected as vd>4. The third 

parameter  (z)  is  the  tree  height.  Using  the  tree  mask  from 
multispectral  classification,  we  calculated  the  minimum  tree 
height as 3m. The fourth parameter (d) is the point density. The 
minimum point density has been calculated for the tree masked 
areas as 20points/ 25m2. By applying these four parameters to 
the raw DSM Lidar data, the tree points (Fig. 8) have been ex-
tracted and eliminated from all off-terrain points to extract the 
buildings. The workflow can be seen in Figure 7.

Figure 7. Workflow of detection of buildings in method 4 (Zurich Air-
port)

Figure 8. Detected trees  in method 4 (Zurich Airport)

The density of point  cloud  directly affects  the quality of the 
result.  In  addition,  some  tree  areas  could  not  be  extracted 
because of the low point density of the Lidar data. The accuracy 
analysis  shows  that  84%  of  buildings  area  are  correctly 
extracted, while 100 of 109 buildings have been detected but 
not fully extracted, the omission error is 17% . (Figure 9).

  
Figure  9.  Building  detection  result  from  method  4.  (Left:  airport 
buildings, Right: residential area).

Tree + building points

DTM 
Raw 

Horizontal density analysis 
on DTM Raw

Similarity of surface 
normal vectors (s<2)
Vertical density vd>4
Point density d≥20
Minimum height z ≥3

Tree points

Building 
points

DSM 
Raw 

A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
                                                in conjunction with 
                         ASPRS/CaGIS 2010 Fall Specialty Conference 
                               November 15-19, 2010 Orlando, Florida



For the Vaihingen region,  similar approach has been applied, 
except the result from morphological filtering has been used as 
an input (Fig 10). 

Figure10. Building detection result from method 4(Vaihingen)

5. ANALYSIS OF THE RESULTS

Each  method  shows  similar  performance  with  differences  in 
completeness. The improvement of the results is performed by 
taking  into  account  the  advantages  and  disadvantages  of  the 
methods.

For Zurich dataset, regarding completeness, the reference data 
has been generated using aerial images, and some buildings are 
in  construction  process.  In  the  construction  areas,  these 
buildings were measured as fully completed, although they were 
only partly constructed in reality. On the other hand, due to the 
temporal  difference  between  the  reference  vector  and  Lidar 
data, the completeness of Lidar-based methods (methods 3 and 
4) has also been negatively affected.  

(1∩2): While method 2 does not contain shadow on vegetation, 
intersection of these two methods eliminates the problems from 
shadow  on-vegetation.  The  correctness  of  the  extracted 
buildings from this combination is 86%, and the omission error 
is 12%. 

(1∩2)  ∩4:  This  combination  eliminates  the  airplane  objects 
from the extraction result (Figure 11). The other advantage of 
this combination is that it eliminates the problems which come 
from  the  construction  process  on  some  buildings.  The 
correctness of the extracted buildings from this result is 84%, 
and the omission error is 8%. 

Figure 11 Left: Airplanes which were detected as buildings in (1∩2), 
Right: Elimination of airplanes with (1∩2) ∩4. 

((1∩2)  ∩4)  U 3:  combination eliminates the errors resulted by 
the shadow on vegetation, the airplane objects, shadow regions 
(Fig. 12). 

Figure 12. Left: buildings without the regions which covered by 
shadow in ((1∩2) ∩4), Right: more complete roofs with ((1∩2) 
∩4) U 3.

After  the  quality  analysis  with  the  reference  data,  the 
correctness has been calculated as 91% and the omission error 
is 7%. More details can be found in (Demir et al, 2009)

Shadow related  errors  have  also  been  seen  in  the  results  of 
Vaihingen  dataset.  While  the  result  from  method  3  is  not 
available,  only ((1∩2)  ∩4)  combination  has  been  done.  The 
result of this combination contains the regions which are in the 
results of the all methods, so the result is expected to be more 
accurate but less complete. After the quality analysis with the 
reference data, the correctness has been calculated as 88% and 
the  omission  error  is  17%.  The  later  approach  which  is 
detection  of  roof  surfaces  will  eliminate  the  non-building 
objects. 

6. ROOF SURFACE DETECTION AND GENERATION 
OF FINAL BUILDING POLYGONS

Detection of roof surfaces has been followed after detection of 
the building polygons. We have aimed to extract roof surfaces 
and improved the quality of detection result with elimination of 
points which don’t  belong to roof surfaces. First,  raw LIDAR 
data have been overlaid on the detection result and later roof 
surface extraction process have been applied. Before that, 2 m. 
dilation has been applied to take more Lidar points as much as 
possible which belong to the roof surfaces (Fig 14).

Schnabel  (2007a)  and  Schnabel  et  al.,  (2007b)’s  RANSAC 
method  has  been  used  for  fitting  of  the  roof  surfaces  into 
geometrical models mainly planes. RANSAC generates a large 
amount of hypothesis of primitive shapes by randomly selecting 
minimum subset of sample points that each uniquely determines 
the parameter of a primitive.

The scoring mechanism is employed to detect the best primitive. 
The process starts with calculating the surface normal vectors of 
each point with selection of neighboring points. The localized 
sampling strategy has been used by octree data structure for the 
random selection of minimal subset of points in this method. 

The  score  of  the  candidate  shape  is  evaluated  by  using  the 
parameters which are the tolerance distance of shape, minimum 
deviation  of surface normal and connectivity of points.  After 
detection of the points which belong to roof surfaces, all other 
points, which don’t belong to any geometrical shape, have been 
removed,  and new building polygons  have been generated to 
improve the detection accuracy (Fig 13-15). Quality assessment 
of the plane detections has been performed qith visual check for 
only  the  residential  buildings  of  Zurich  dataset  since  the 
reference data for roof planes do not exist for Vaihingen dataset 
and  not  reliable  for  airport  terminal  buildings.  Within  the 
selected  area,  99  roof  planes  were  visually  identified  and 
labeled  by  the  reference  vector  data.  Detection  process  has 

A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
                                                in conjunction with 
                         ASPRS/CaGIS 2010 Fall Specialty Conference 
                               November 15-19, 2010 Orlando, Florida



given 113 planes for the selected area. 14 planes have not been 
correctly detected, they are mostly small plane detections which 
should already belong to other plane surfaces. 

Figure 13. Left:detected building outline(cyan) and LIDAR 
points(yellow), Middle:detected roof plane points(purple-green) and 
non-roof points (red), Right:New building outline after elimination of 
non- roof points

Figure 14 .Some examples from extracted roof segments (up:Zurich 
airport, down: Vaihingen)

Figure 15 .Final building polygons (up: Zurich airport, down: 
Vaihingen)

7. CONCLUSIONS AND FUTURE WORK

In  this  paper,  different  methods  for  object  detection  (mainly 
buildings) in Lidar data and aerial images have been presented. 
In  each  method,  the  basic  idea  was  to  get  first  preliminary 
results  and  improve  them later  using  the  results  of the other 
methods. The methods have been tested on two dataset located 
at Zurich Airport, Switzerland, and Vaihingen region, Germany.

The results from each method have been combined according to 
their  error  characteristics.  Roof  surfaces  have  been  extracted 
and finally, the correctness of detection has been improved to 
94% with remaining 7% omission error for Zurich airport, and 
90%  with  remaining  17%  omission  error  for  the  Vaihingen 
dataset.  Further  processes  will  be  applied  for  the  quality 
assessment of the detected roof planes and then direct 3D edge 
matching will be done and detection of 3D inner and outlines 
using aerial images will  be generated. First 2D line segments 
will be extracted using Harris corner and canny edge detectors 
with  splitting  edges  in  Harris  corner  points.  Then  2D  line 
matching  will  be  performed  to  reconstruct  3D  lines.  After 
extraction of 3D lines, reconstruction of roofs will be completed 
by combination of 3D roof surfaces and 3D lines of the roofs. 
This  combination  will  be  done  with  grouping  of  3D  lines 
according to their 3D surfaces. 
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