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ABSTRACT: 
 
The high frequency and scope of spatial changes in cities demands ways of expediting the production and updating of large-scale 
geographic information. For that purpose, current and future very high spatial resolution satellite imagery (VHR) and semi-
automated object-based image analysis methods may be an advantageous alternative to classical data sources and methods, i.e., 
aerial photography and photogrammetry. At the same time, the urban environment is becoming more complex and heterogeneous, 
possibly turning the feature extraction process more challenging. While much research has focused on developing, adapting and 
applying these approaches, less attention has been devoted to the interplay of data source (imagery), feature extraction methods, and 
geographic characteristics of the area under analysis. Lisbon, Portugal, is both a historical and modern city having a dynamic 
landscape, where increasingly diverse urban forms and materials coexist. This complex reality is possibly causing the feature 
extraction process from imagery to become more challenging. This study tests the semi-automated extraction of buildings from a 
QuickBird image in several urban study areas in Lisbon having different characteristics, and explores the impact of the 
heterogeneity of these features in the extraction process. Spatial metrics and spectral response are used to characterize types of 
buildings present in the study areas. Results show that the study areas display different levels of heterogeneity even for the same 
type of building and suggest that the quality of the extraction is affected by more factors than the complex variations in color/tone, 
composition and spatial configuration of target features. 
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1. INTRODUCTION 

The majority of municipal activities, namely in urban planning 
and management, have a geographic component. Most large 
cities experience a high frequency and scope of spatial changes, 
which demand ways of expediting the production and updating 
of large-scale geographic information. In Portugal, this is 
legally required to support the Municipal Master Plans. For that 
purpose, current and future very high spatial resolution satellite 
imagery (VHR), due to their availability, wide coverage, and 
cost, may be an advantageous alternative to classical data 
sources and methods, i.e., aerial photography and 
photogrammetry (Ehlers, 2007).  
 
The nature of this recent data source, volume of data, and 
expanding range of applications has been driving the 
development of advanced semi-automated geographic object-
based image analysis (i.e. GEOBIA) (Hay and Castilla, 2008) 
methods for efficient feature extraction. There are now several 
commercial-off-the-shelf software packages which are 
increasingly user-friendly. Still, to be operationally adopted by 
municipalities, feature extraction should be reliable, have clear 
procedures and parameters to facilitate insertion into a mapping 
work-flow, and conform or approach quality standards typical 

of large-scale mapping. Therefore bringing GEOBIA 
approaches into the operational mapping domain remains a 
challenge and should probably be a ‘hot’ research topic in the 
field in addition to the four topics recently listed by Blaschke 
(2010).  
 
At the same time, the overall urban environment is becoming 
more complex and heterogeneous, possibly turning the feature 
extraction process more challenging. In old cities, the historical 
process of urbanization originates urban features which vary 
widely regarding age, condition, spatial composition and 
configuration. While much research has focused on developing, 
adapting and applying these approaches, less attention has been 
devoted to the interplay of spectral data source (imagery), 
feature extraction methods, and geographic characteristics of 
the area under analysis.  
 
Originating in landscape ecology, spatial metrics can be 
employed to measure the heterogeneity of landscapes at 
different spatial scales based on categorical patches or 
elements. Herold et al. (2003a) have used spatial metrics and 
texture to analyze and differentiate urban land uses in an 
urbanized coastal area of California, USA and concluded that 
these metrics contribute the most information to image 
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classification, despite confusion among different residential 
land-use types. 
 
The work presented in this paper takes place in the context of 
the exploration of VHR satellite imagery and new methods as 
an alternative source of geospatial information for large scale 
mapping to assist urban planning and management in Lisbon, 
Portugal. The present effort aims at testing the semi-automated 
extraction of different building types from areas with diverse 
characteristics, and investigating the impact of the 
heterogeneity of these features and the urban context in the 
extraction process. 
 
 

2. STUDY AREA AND DATASETS 

2.1 Study area 

Lisbon is both a historical and modern city having a dynamic 
and complex landscape.  Four study areas were selected in 
different parts of the city, to represent the diversity of urban 
character.  The areas have a square shape and the same size of 
64 ha (800 m X 800 m) (Figure 1). 
 
 

 
 

Figure 1.  Location of the study areas 
 
Study area A (Baixa) is located in the slow-changing old 
historical district (i.e., downtown): the street network is dense 
and most of the area is built-up.  Study area B (Madre) is 
located in the oriental part of the city and has a very 
heterogeneous land use, including built-up, parks, agriculture 
and vacant land; buildings’ functions range from residential 
(single and multi-family housing), to industrial, utilities, and 
schools.  Study area C (Alta) is a new residential area under 
development, with on-going construction of parks, roads, and 
apartment buildings.  Study area D (Expo) corresponds mostly 
to a former heavily industrial area (brown fields) which has 
been developed since being selected to host the 1998 Lisbon 
World Exposition (Expo ’98). 
 
The four study areas are quite distinct, with their current urban 
morphology and majority of buildings originating in different 
periods (Table 1). 
 
 

Study Area Urban 
Morphology 

Majority of Buildings 

A-Baixa <= 18th 18th, 19th 
B-Madre <= 19th, 20th 20th 
C-Alta 21st 21st 
D-Expo 20th 20th 

 
Table 1. Main periods (centuries) determining current urban 

layout of the study areas 
 
2.2 Datasets 

The spatial database includes spectral, altimetric, and 
planimetric data sets. A QuickBird (QB) image was acquired in 
April 14, 2005 with an off-Nadir angle of 12,2º. The image has 
a spatial resolution of 2,4 m in the multispectral mode and 0,6 
m in the panchromatic mode, and a radiometric resolution of 11 
bits. Altimetric data included a normalized Digital Surface 
Model (nDSM) for 2006 obtained from combining a LiDAR-
derived DSM with a Digital Terrain Model, both at 1 m 
resolution. Planimetry included a detailed reference map of 
building roofs outlines and types, produced by an independent 
interpreter using visual analysis of the imagery and ancillary 
data. 
 
Pre-processing of data has included orthorrectification and 
pansharpening of imagery in PCI Geomatica and production of 
the nDSM grid. All data sets were geometrically corrected to a 
common projected coordinate system (PT-TM06/ETRS89). 
Still, there was some mis-registration between the QuickBird 
and the nDSM data sets on building’s roofs (relief 
displacement) due to the significant off-Nadir angle of the 
image. For more details on this stage see Santos et al. (2010). 
 
 

3. METHODOLOGY 

The approach involved extraction of specific classes of 
buildings and its quality assessment, computing spatial metrics 
and image variance for each study area and building class, and 
analyzing the results.  
 
3.1 Feature extraction 

Since our goal was to analyze the heterogeneity of building 
features in the study areas, and satellite imagery capture their 
roof, a typology of buildings’ roofs was defined based on their 
main material and its color/tone/reflectance, the primary 
elements in image analysis (Estes et al., 1983). The following 
building classes were used: 1-Red tile roof, 2- Dark tile roof, 3-
Light tin roof, 4-Dark tin roof, 5-Fibrocement roof, 6-White 
roof, and 7-Other roofs. 
 
Extraction of building classes (polygons) from the imagery was 
performed using Feature Analyst 4.2 (VLS), as an extension for 
ArcGIS (ESRI). Feature Analyst (FA) is a GEOBIA application 
that conducts an internal “hidden” segmentation of the image 
that allows classifying and extracting only those features 
belonging to the class of interest (Optiz and Blundell, 2008).  
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The training parameters that resulted in the best extraction of 
each building class in each study area are listed in Table 2. 
 
 

Study 
Area 

Bldg. 
Class 

Trainin
g 

Features 

Pattern Width Aggreg. 

1 49 Manh. 13 11 
2 49 Manh. 13 11 
3 4 Manh. 9 70 
5 4 Manh. 9 70 

A 

6 3 Manh. 11 90 
1 24 Manh. 5 10 
3 1 Manh. 5 100 
4 5 Manh. 9 70 
5 7 Manh. 5 100 

B 

6 2 Manh. 5 10 
1 7 Manh. 13 200 
5 4 Manh. 13 200 C 
6 6 Manh. 9 80 
1 9 Manh. 5 80 
5 14 Manh. 13 100 D 
6 8 Manh. 13 100 

 
Table 2. Parameters used for feature extraction 

 
Not all building classes were present or significant enough (i.e., 
having more than 10 features) for extraction in each study area. 
Extracted features were not generalized or squared up prior to 
accuracy assessment.   
 
Each building class was extracted independently using the 
pansharpened QuickBird image as main input, and the nDSM 
as ancillary elevation.  Although individual adjacent buildings 
can be identified visually in the image and used as training 
areas, due to the combined limitations of extraction algorithms 
and image spatial resolution, FA can only retrieve building 
blocks of the same class. Building blocks equal buildings for 
non-contiguous buildings. 
 
For assessing the quality of the feature extraction stage, and in 
the absence of a compatible and updated official map, a 
reference map of building blocks was created by an 
independent interpreter using visual analysis and manual 
digitizing over the pansharpened image, with the assistance of 
ancillary data (e.g. orthophotos). All the discernible buildings, 
without limits of size or shape, were digitized and classified as 
belonging to one of the seven classes.  
 
Thematic quality assessment was exhaustive (i.e., by census) 
and conducted independently for each class using ArcGIS 9.3 
(ESRI). It was based on analysis of spatial overlap between 
classified and reference map for each building class, in vector 
format: percent overall accuracy is obtained by dividing the 
area of intersection of both datasets by the area of union, while 
the proportion of non-overlapping features from the reference 
map stands for error of omission and the proportion of non-
overlapping features from the classified map stands for error of 
commission (Freire et al., 2010). Because the independently-

extracted datasets for different building classes can overlap, an 
object-based overall thematic accuracy for study areas can be 
obtained by computing an average value among extracted 
classes weighted by the actual number of features (in the 
reference dataset).  
 
3.2 Spatial metrics and spectral response 

Although some metrics are highly correlated to one another and 
can be redundant, a large set of spatial metrics (Table 3) was 
selected and computed as patch-based indices for each building 
class in the reference dataset in order to characterize the 
buildings present in the study areas and assemble a database.   
 
 

Indicator Acronym Units 
Number of features  NoF Number 
Percentage of features  No % Percent 
Feature density  Fdens no. per ha 
Percentage of landscape  PL Percent 
Mean feature size AREA MN m2 
Area standard deviation  AREA STD m2 
Shape Index  SI -- 
Perimeter-Area Ratio  PAR m per m2 
Fractal Dimension  FD -- 
Nearest Neighbor Mean 
Euclidian Distance  

ENN 
MEAN 

m 

Richness  R -- 
Diversity Index  Div -- 
Evenness Index  Eve -- 
Dominance  D -- 

 
Table 3. List of spatial metrics computed 

 
The metrics are used to quantify the spatial heterogeneity at 
two levels in each study area: a) the building block class level, 
and b) the landscape level, using overall values for each study 
area.  Calculating metrics for typologies of building roofs 
represents a one-level increase in the urban analysis scale when 
compared with the generic class “buildings” analyzed by 
Herold et al. (2003a). 
 
The metrics were calculated in ArcGIS 9.3 in vector format for 
the reference building blocks. The more complex indicators 
were computed using the V-LATE 1.1 extension tool (Lang and 
Teide, 2003). Shape Index, Perimeter-Area Ratio and Fractal 
Dimension give indications about landscape configuration, 
while Richness, Shannon’s Diversity and Evenness Indices, and 
Dominance are examples of landscape composition indicators.  
More details on these metrics can be found in O’Neill et al. 
(1988) and Herold et al. (2003). 
 
In order to study the heterogeneity of the spectral response 
within each building type, its variance for the image bands was 
computed and analyzed. For the pansharpened image pixels 
within each feature class and study area, the standard deviation 
(Std.) of each band’s Digital Numbers (DNs) was computed 
and averaged for the four bands. 
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4. RESULTS AND DISCUSSION 

4.1 Feature extraction 

In study areas A and B five classes were extracted, while in 
study areas C and D only three had significance to be extracted. 
Figure 2 illustrates results of extraction for buildings with tile 
roofs in study area A. 
 

 
 
Figure 2. Example of extracted features in study area A-Baixa 

 
Results of quality assessment (Table 4) show that thematic 
accuracies varied significantly within and among the study 
areas, even for the same building class. Accuracies were 
generally low for all classes other than buildings with tile roofs. 
This class was the most-consistently extracted. Accuracy for 
buildings with white roofs (6) had the widest range, being 
lowest in study areas A and C, while attaining the highest value 
in area D. Some roof types, while being semantically different 
for a human interpreter, are not sufficiently distinct spatially 
and spectrally for an automated classification. Most roof types 
are spectrally similar to patches of other urban features such as 
roads and bare ground (Herold et al., 2003a; 2003b), and there 
is not sufficient contrast between the object and its background, 
a requirement for its correct detection and delineation (Jensen 
and Cowen, 1999). 
 
 
 
 
 
 
 
 
 
 
 

  Error Study 
Area Bldg. 

Class 
Overall 

Accuracy 
Omission Commission 

1 70,1 26,1 6,8 
2 70,1 26,1 6,8 
3 36,8 40,9 50,6 
5 26 70,7 31,2 

A 

6 19,2 56,3 74,5 
1 73,2 22,1 7,5 
3 43,5 56,5 4,8 
4 46,8 32,6 39,6 
5 46,3 51,6 10,2 

B 

6 67,9 27,1 9,2 
1 83,6 6,0 11,7 
5 46,8 6,5 51,6 C 
6 29,9 32,2 65,1 
1 65,5 13,8 26,9 
5 32,6 37,7 59,1 D 
6 86,9 12,1 1,6 

 
Table 4. Results of thematic quality assessment (%) for each 

building class by study area 
 
Building feature classes tend to be significantly undermapped, 
especially in study areas B and D (omission error higher than 
commission). However, buildings are significantly overmapped 
in study area C (commission error higher than omission), due to 
confusion with bare ground, highway viaduct and other 
materials because of on-going construction at the time of image 
acquisition. 
 
In study areas A and B some buildings are partially covered by 
trees and in area B there are shipping containers that are mis-
extracted as buildings. 
 
4.2 Spatial metrics and spectral response 

Some of the spatial metrics obtained for each building class in 
each study area are shown in Tables 5 and 6. Results reveal that 
most metrics vary widely between study areas for the same 
feature class. The widest variations occur for buildings with red 
tile roofs, the most prevalent in Lisbon. Although their density 
is highest in area B, their prevalence (PL) is highest in area A, 
where their mean size (Area MN) is greatest, despite showing 
great variation (STD). Highest accuracy was obtained in area 
C, where the boundaries are simpler and more regular (lowest 
FD) and distance between buildings is greatest (ENN MEAN). 
 
Metrics for fibrocement roofs also display significant variation: 
their presence is much more significant in study area B (due to 
industrial land use), although their average size is quite smaller 
than in the other areas; the Shape Index indicates that these 
buildings are more compact in A than in C (new area, long 
building blocks), while their boundaries are more irregular in B 
(higher FD). 
 
White roofs have similar densities (Fdens) but are much more 
prevalent and much larger on area D, where they are also much 
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more compact (highest SI) and have simpler boundaries. This 
may contribute to their high accuracy in this area. 
 

Bldg. Class Study 
Area 

NoF Fdens PL Area 
MN 

A 181 2,8 33,4 1180 
B 345 5,4 9,6 178 
C 33 0,5 3,2 627 

Red tile roof 

D 51 0,8 2,6 328 
A 13 0,2 1,3 643 

Dark tile roof 
B 7 0,1 0,1 108 
A 23 0,4 1 288 

Light tin roof 
B 31 0,5 0,7 148 
A 2 0,03 0 125 

Dark tin roof 
B 20 0,3 0,7 214 
A 56 0,9 2,8 323 
B 161 2,5 4,8 192 
C 11 0,2 1,8 1037 

Fibrocement 
roof 

D 47 0,7 24,2 936 
A 16 0,3 0,5 199 
B 32 0,5 0,8 169 
C 13 0,2 1,4 671 

White roof 

D 22 0,3 14,5 4223 
A 5 0,1 0,1 150 
B 3 0,05 0,1 125 Other roofs 
C 4 0,1 0,2 326 

 
Table 5. Spatial metrics for each building class by study area 

 
Bldg. Class Study 

Area 
Area 
STD 

SI FD ENN 
MEA

N 
A 1873 1,65 1,6 4,8 
B 231 1,32 1,7 4,5 
C 523 1,44 1,56 22,9 

Red tile roof 

D 332 1,41 1,59 9,3 
A 621 1,5 1,61 61,4 

Dark tile roof 
B 106 1,19 1,76 84,5 
A 335 1,27 1,59 37,3 

Light tin roof 
B 365 1,35 1,93 37,8 
A 96 1,5 1,79 774,6 

Dark tin roof 
B 375 1,34 1,78 23,5 
A 623 1,31 1,65 16,1 
B 535 1,39 1,79 13,1 
C 704 1,59 1,56 51,3 

Fibrocement 
roof 

D 2412 1,45 1,59 24,9 
A 265 1,46 1,71 68,4 
B 228 1,26 1,76 39,2 
C 1373 1,58 1,68 40,5 

White roof 

D 5978 1,68 1,53 44,7 
A 94 1,22 1,77 221,8 
B 84 1,23 1,81 260,8 Other roofs 

C 408 1,29 1,64 213,7 
 

Table 6. Spatial metrics for each building class by study area 
(cont.) 

Tables 7 and 8 show overall (weighted) accuracy and spatial 
metrics for all buildings in each study area (landscape level).  
Accuracies are relatively low and differences are not very 
significant. Accuracy was highest in areas B and C, and lowest 
in areas A and D. The latter areas have the largest variation of 
building sizes (AREA MN), while the former have the lowest. 
Buildings are the least compact in area A. The small size of 
buildings in study area B probably contributes to their 
undermapping (omission). 
 
Relation to composition metrics does not appear evident: the 
area with lowest accuracy displays significantly lower 
Diversity, Evenness, and highest Dominance. Results suggest 
that the success of extraction may be more related to spatial 
configuration of features than to spatial composition of the 
landscape. 
 
 

Study 
Area 

Overall 
Accuracy 

R Div Eve D 

A 56,1 7 0,62 0,32 1,33 

B 65,7 7 1,15 0,59 0,80 

C 64,2 4 1,14 0,82 0,25 

D 56,5 5 1,29 0,8 0,32 

 
Table 7. Overall accuracy and spatial metrics for all buildings 

in each study area (landscape) 
 
 

Study 
Area 

NoF AREA 
MN 

AREA 
STD 

SI ENN 
MEAN 

A 296 847 1559 1,53 24,3 

B 599 180 350 1,33 13,2 

C 61 690 826 1,49 44,3 

D 162 1120 2897 1,43 27,4 

 
Table 8. Overall accuracy and spatial metrics for all buildings 

in each study area (landscape) 
 
Table 9 illustrates variation in roof’s spectral response by 
showing the mean Standard deviation of image DNs for each 
building class per study area.  
 
 
 
 
 
 
 



 

A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
in conjunction with 

ASPRS/CaGIS 2010 Fall Specialty Conference 
November 15-19, 2010 Orlando, Florida 

Bldg. Type/Class Study Area 

1 2 3 4 5 6 7 

A 128 80 265 68 118 175 126 

B 114 71 157 72 106 228 87 

C 100 - - - 116 166 113 

D 115 - 63 - 183 163 223 

 
Table 9. Mean Std. of image DNs for each building class by 

study area 
 
It is building class 3 (light tin roof) that exhibits the smallest 
(area D) and greatest (area A) variations in spectral response.  
For class 1, variation is smallest in C, where its accuracy is 
highest. Class 6 also achieves its highest accuracy in area D 
where its variation is smallest, and lowest accuracy where 
variation is greatest. 
 
These results, although preliminary, suggest some degree of 
dependence of accuracy on lower variance of features’ spectral 
response or color. 
 
 

5. CONCLUSIONS 

The present work is an exploratory attempt at assessing the 
heterogeneity of feature types and studying the relevance of the 
urban context in the framework of semi-automated extraction of 
buildings from VHR satellite imagery for the purpose of urban 
planning and management. 
 
Typical building classes from four study areas in Lisbon are 
delineated from a QuickBird image using automated feature 
extraction.  Heterogeneity of building features is investigated 
using spatial metrics and variance in spectral response at the 
level of the building block. The analysis is focused on distinct 
types of roofs of buildings present in the study areas. Results 
show that thematic accuracy and spatial metrics of different 
building types vary significantly within the same study area and 
also among different study areas for the same semantic class of 
building. Roof types display different levels of heterogeneity.   
 
Results suggest that the spectral context and spatial 
configuration of target features may be an important factor for 
the success of automated extraction. However, the quality of 
the extraction appears to be affected by more factors than the 
complex variations in reflectance, composition and spatial 
configuration of target features. Although the extraction’s 
accuracy is not linearly related to the heterogeneity of features, 
the complexity and heterogeneity of such an historical and 
dynamic city make the automated extraction of buildings very 
challenging. Extraction of buildings having similar roofs is 
further complicated by the different solar illumination of roof 
gables at time of image acquisition.  
 
Future developments include the inclusion of additional study 
areas (E was selected) as well as more quantitative analysis of 
spatial metrics. Measures of texture will be explored and the 
additional land cover context should be considered.  Socio-

economic variables from the census could be added to the 
spatial analysis to further characterize the different areas. 
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