
A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
i n  c o n j u n c t i o n  w i t h  

ASPRS/CaGIS 2010 Fall Specialty Conference 
November 15-19, 2010 Orlando, Florida 

 ANALYTICAL RESULTS OF CLASSIFYING LIDAR DATA WITH  
TOPOGRAPHY PRESERVING NON-LINEAR AUTONOMOUS PROCESSING  

FOR BARE EARTH EXTRACTION 
 

Mark Rahmes, J. Harlan Yates, Tim Dayhuff 
 

Harris Corporation 
Government Communications Systems Division 

Melbourne, Florida 32904 
mrahmes@harris.com; hyates@harris.com; tdayhuff@harris.com 

 
 

KEY WORDS:  LiDAR, DTM, Partial Differential Equation, Inpainting, ROC Curves 
 
 

ABSTRACT: 
 
We present an innovative way to autonomously classify LiDAR points into bare earth, building, vegetation, and other categories.  
One of the most desired commodities for LiDAR collection is a high resolution bare earth product with the same resolution as the 
input data.  The LiteSite® algorithm automatically extracts buildings and foliage from an urban scene and generates an accurate 
bare-earth product. Our inpainting algorithms then fill these voids utilizing Computational Fluid Dynamics (CFD) techniques and 
Partial Differential Equations (PDE) to create an accurate Digital Terrain Model (DTM). Inpainting allows generation of high 
resolution bare-earth Digital Elevation Models (DEMs) in high frequency terrain for urban 3-D modeling. Moreover, if buildings 
in the scene are partially obscured by trees, then the LiteSite® algorithm automatically removes these obscurations and inpaints 
the heights while preserving building edge content where vegetation has been extracted. Inpainting preserves building height 
contour consistency and edge sharpness of identified inpainted regions. This technology reduces manual editing while being cost 
effective for large scale global bare earth production.  Quantitative analyses are provided using Receiver Operating 
Characteristics (ROC) curves to show Probability of Detection and False Alarm of ground versus non-ground features. 
Histograms are shown with sample size metrics. Qualitative results illustrate other benefits such as Terrain Inpainting’s unique 
ability to minimize or eliminate undesirable terrain data artifacts. 
 
 

1.   INTRODUCTION 
 
The purpose of this paper is threefold. The first objective is to 
demonstrate a method for classifying LiDAR points into two 
categories, bare earth and non-bare earth points.  The second 
objective is to show qualitative and quantitative 
improvements to bare earth LiDAR classification using our 
PDE-based inpainting techniques by comparing with truth 
data. Further discrimination of points into building and 
vegetation points is discussed.  Finally, a framework is 
presented for an automated scoring technique to grade 
performance of LiDAR classification using ROC curves and 
signal detection theory. 
 

2.   BARE EARTH PROCESSING 
 
The objective of bare earth processing is to autonomously 
reconstruct the bare earth in places where buildings, trees, and 
other non-bare earth objects have been removed or where data 
is missing while maintaining continuous height contours.  
This allows our technique to generate high resolution bare 
earth DEMs from high frequency terrain. 
 

One of the more common applications of LiteSite’s Terrain 
Inpainting is in the creation of a DTM of an input scene as 
either a final product or as an intermediate input for further 
processing (e.g., 3D site model creation or orthomosaic 
production). During this process, LiteSite® automatically 
classifies and removes culture and vegetation from the input 
Digital Surface Model (DSM).  LiteSite® is designed to 
process DSMs created from multiple sources.  Primary 
examples are surface models created from photogrammetry, 
LIDAR, or IFSAR. 
 
Figure 1a shows a DSM generated from LAS point data.  
After the completion of the automated bare earth process, we 
output a model containing only those points that fall on the 
terrain surface, see Figure 1b.  All other points in the input 
belonging to cultural or vegetation features have been 
removed.  These void areas introduced during bare earth 
processing must be filled to create a complete DTM.  
Inpainting attempts to accurately propagate information from 
extracted building and tree boundaries as shown in Figure 1c.  
Figure 1d shows the automatic classification of culture and 
vegetation as a separate output. 
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Figure 1a. DSM Created from LAS Points 
 
 

 
 

Figure 1c. DTM Voids Filled With Inpainting 
 
 
The LiteSite® software automates the creation of geospatial 
products including bare earth Digital Terrain Models (DTM) 
and image-textured 3D site models [1].  Terrain inpainting 
provides void fill processing for geospatial data production in 
areas where information is incomplete.  Geospatial products 
created through digital processing can introduce visible 
artifacts from void fill and other associated processing. 
Terrain inpainting produces minimal artifacts, and at the same 
time provides a representation designed to be as accurate as 
possible with quantifiable accuracy assessment.  Quantitative 
assessment and built-in error estimation are vital for the 
robustness and applicability of terrain inpainting. We have 
further improved determination of the bare earth points prior 
to void filling using principles from the Multi-Directional 
Ground Filtering (MGF) algorithm by Meng [2]. 
 
 

3.   LIDAR CLASSIFICATION 
 
We perform an initial automated classification of the LAS file 
to a gridded space producing a classified DTM. Our algorithm 
ingests the original LAS file and DTM, and then outputs a  

 
 

 
Figure 1b. Ground Points Identified 

 
 

 
 

Figure 1d. Building and Tree Points Identified 
 
 
new LAS file with the point classification field set by 
comparing points to DTM appropriate height values. For each 
point in the input LAS file, we classify its feature label. 
Geospatial coordinates are left unaltered. Automated scoring 
through comparison of the classifications of the input and 
output is performed.  The first step is recording the original 
classification of the input file. Then each point in the DTM 
with valid height (i.e., not NaN) has its feature type label 
classified. The closest index point for each valid post is 
located in the DTM as the ground point. If the point is within 
the specified tolerance of the ground surface DTM, we 
classify it as ground. This threshold is called the ground 
surface tolerance. 
 
If we are labeling buildings, we make sure the point is non-
null in the building DEM and then ensure that the height of 
the current point (from the LAS file) is above the ground by a 
specified tolerance. If so, we classify it as building. If we are 
labeling vegetation, the same process described for buildings 
is used for vegetation. We identify points that are not in any 
of the previously checked categories and label them with the 
other label. An output comparison between the original LAS 
and reclassified LAS points is performed. 
 
Figure 2 below shows the LiDAR classification processing 
flow diagram. The process begins with ingest of LAS 
formatted LiDAR points, but the process is able to use other 
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formats. The unordered points are gridded and small gaps are 
filled with a simple nearest neighbor interpolation for a fast 
void fill. In the case of LiDAR inputs, this process is 
performed for both the first and last return DSMs. The larger 
voids are then filled with our PDE inpainting technology for 
greater accuracy. Building and tree points are further 
separated through the use of the height difference between 
first and last DSMs along with a set of additional post-
processing classification steps. A slope calculation is 
performed to help distinguish buildings and trees for inputs 
where the input DSM only has one reflective surface 
available. Using the ground point DTM, the building post 
DSM and the vegetation post DSM our algorithm assigns a 
classification label to the original points and outputs a labeled 
LAS formatted file. 
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Figure 2.  LiteSite® LiDAR Classification  
Processing Flow Diagram 

 
 

4.   SAMPLE QUALITATIVE RESULTS 
 
Figure 3 shows 3D views of sample data. Hydrographic 
features are very important for defining any DEM surface and 
therefore must be retained in LiDAR derived DEMs. Our 
algorithm strives to ensure that hydrographic features are 
retained as ground points in the DTM, while a minimal 
number of noisy or non-ground posts are classified as ground 
by our algorithm. In a traditional DEM surface, natural 
depressions exist, bridges may be removed, but road fills with 
culverts create apparent dams resulting in DEMs that appear 
to disrupt the natural flow of water [3]. 
 

 

 
 

Figure 3.  Detail of Hydrographic Features 
 
A useful viewing technique is to look at profiles to see 
landscape variations in the data.  The profile analysis in 
Figure 4 shows that ground and vegetation points are 
reasonable. The different colors indicate the assigned 
classification. 
 
Full classification of LiDAR points for non bare earth points 
is desirable. Figure 5 shows non-ground LiDAR points further 
classified as vegetation and building posts. We have 
previously shown that inpainting can be a useful method for 
enhancing building posts in a DSM prior to extraction of 
building vectors [4]. This automated application of classifying 
all LiDAR points saves manual labor editing time. 
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Figure 4. Profile Analysis Illustrating Ground  
and Vegetation Classification 

 

 
 

Figure 5. Full Classification of LiDAR Points 
 

 
5.0   SAMPLE QUANTITATIVE ANALYSES 

 
There are many opportunities in the process to look at optimal 
decision making to determine the best threshold for a 
parameter.  This section focuses on one of the parameters at 
the very end of the processing flow, namely the ground 
surface tolerance. The value of the ground surface tolerance 
serves as the horizontal axis of the histograms.  
 
Each LiDAR point serves as a trial point in the histogram. 
COTS processing followed by manual editing is considered 
“truth data” for this data set. Thus, we assume these to be the 
points which should be categorized as ground and those 
which should be categorized as non-ground. Our framework 
for scoring performance of LiDAR classification consists of 
the following automated processing stages: 
 
1. Input the target LAS voxel space for evaluation 

[classified by our algorithm] 
 
2. Compare the target LAS voxel space with original LAS 

truth data. 
 

 For each point in the target LAS voxel space, assign 
a classification hypothesis according to a measured 
threshold distance to the corresponding nearest bare 
earth surface point in the gridded version (DTM) of 
the truth data; compute histograms of hypotheses, as 
ground or non-ground points, for a range of threshold 
distance values.  

 
3. Generate ROC (Pd, Pfa) curve using the histograms. 
 
4. Measure the area under the ROC curve. 
 
5. The area is the measure of confidence in detection, 

ranging between 0.5 (chance diagonal) and 1.0. 
 
Correct Rejection is defined as those points labeled non-
ground in truth data and determined to be non-ground by our 
algorithm. False Alarm is defined as those points labeled non-
ground in truth data and determined to be ground by our 
algorithm. A miss is defined as those points labeled ground in 
truth data and determined to be non-ground by our algorithm. 
A hit is defined as those points labeled ground in truth data 
and determined to be ground by our algorithm. 
 
Following sample data histograms in Figure 6 show 
distributions for non-ground (Hypothesis 0) and ground 
(Hypothesis 1).  The number of samples (LiDAR points) in 
the non-ground truth histogram is 637,196. The number of 
samples in the ground truth histogram is 1,293,384. 
 
Data shows that in some locations our bare earth extraction 
may follow the DSM too closely and erroneously includes 
points that belong to the non-ground points, which are most 
likely low vegetation posts. Data also suggests that truth data 
may contain points which are labeled non-ground, but are 
really ground points. Subsequent ROC curves given the above 
histograms are shown in Figure 7. The last bin contains points 
where the DTM and the LiDAR points have no difference 
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 Figure 6.  Histograms 
 
In height. This is the reason for a portion of the Figure 7a 
curve looking nearly like the chance diagonal.  Figure 7b 
shows the portion of the ROC curve without the last 
histogram bin. ROC curves are shown because they are a 
widely accepted means of evaluating test results.  Higher 
performance tests contain curves near the upper left portion of 
the graph. The ROC curve graphically displays the entire 
range of the test performance thresholds with respect to error 
analysis. 
 

 
 

Figure 7a.  ROC Curves Showing All Bins 
 

 
Figure 7b. ROC Curve Not Showing Last Bin 

Figure 8 shows the four sample states based on a chosen 
threshold. This threshold represents a good choice for 
satisfying product specifications for probability of detection 
and false alarm. 
 
The horizontal axis of the histograms depicts the ground 
surface tolerance. A lower ground surface tolerance 
corresponds to a higher vertical difference between LAS point 
and DTM post. A higher ground surface tolerance is based on 
a very low vertical difference between the computed DTM 
surface and a given LiDAR point. 
 

 
 

Figure 8.  Error Analysis 
 
Figure 9a shows 3% missed points as our algorithm sees these 
as high frequency details. Our algorithm considers these 
points to look like buildings or vegetation non-bare earth 
(type II errors). Figure 9b shows 62% false positive (type I 
errors).  The reason for so many type I errors may be that 
COTS software used to generate truth mostly includes the 
lowest point per square area as the ground for data thinning 
(even if only slight height difference, as shown in Figure 10). 
Too many ground points classified as non–ground results in a 
loss of hydro features. Too many non-ground points classified 
as ground results in a noisy DTM. 
 

 
 

Figure 9a. Type II errors – Missed Points 
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Figure 9b. Type I errors – False Alarms 
 
Figure 10a shows an example of a profile from truth data 
which may suggest that some points should have been 
classified as ground using COTS software. Figure 10b shows 
a profile from the same area with our algorithm’s results.  
 

 
 

Figure 10a. Profiles of Truth Data from COTS Software 
 

 
 

Figure 10b. Profile of LiteSite Classification 
 
 

6.   CONCLUSIONS 
 
In this paper we discussed terrain inpainting for voids 
introduced during processing, such as for bare earth DTM 
generation. The production processing flow presented 
displays terrain inpainting’s ability to automatically fill voids 
using only the original source data at hand and in a way that 
both mitigates and quantifies error, and creates minimal 

processing artifacts. The application of this technology is 
beneficial in improving LiDAR classification of ground vs 
non-ground LiDAR points. We demonstrated a method for 
classifying LiDAR points into bare earth and non-bare earth 
points.  The presented method demonstrates an automated 
scoring technique framework which may be used in making 
best decision on how to tune or calibrate a LiDAR sensor to a 
known test range. This framework may also be used to 
evaluate multiple systems capabilities in a comparative sense. 
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