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ABSTRACT:

The paper describes experiments performed in an ongoing research project on field robots accomplished with a simple interface con-
trolled track vehicle equipped with a 204x204 pixel 25 Hz range camera. The goal is to use the 3D-camera data to support the navigation
and collision avoidance of the vehicle in agricultural applications. The paper concentrates on the generation of plant canopy density
maps and the removal of outliers in a filtering step applying 3D morphology techniques.

1 INTRODUCTION

Mapping their environment, recognizing obstacles and moving
around like human beings is a high goal for autonomous mobile
robot navigation. The control of a robot with different sensors is a
current research field with high potential. One of the most power-
ful sensors for control and orientation of robots are cameras. This
holds especially for modern range cameras acquiring images at a
high temporal resolution and getting range information for each
pixel simultaneously.

In agricultural applications, a mobile robot may have the task to
navigate through rows of plants, for instance in order to spray,
water or harvest them. Due to the rough and often slippery ground,
wheel encoders are not very helpful in these tasks. Here, a range
camera, possibly combined with GPS and compass devices, may
be a rather valuable tool to generate a 3D map of the robots envi-
ronment and to detect open space to navigate. Simultaneously, it
may also deliver information on plant structure, growth and har-
vesting.

Figure 1: Used mobile robot with PMD CamCube 2.0 538

Parameter Value
Camara Type PMD CamCube 2.0
Measurement Range 03to7m
Repeatability (10) <3 mm
Frame Rate (3D) 25 fps
[llumination Wavelength 870 nm
Sensor Size 204x204 pixel

Table 1: datasheet PMD CamCube 2.0 (PMD, 2010)
State Of The Art

Agricultural applications with mobile robots and 3D-cameras are
still largly unexplored. Unlike for instance in urban environments
regular geometries are rare in an agricultural environment (Cole
and Newman, 2006) (Weingarten, 2006). This means for exam-
ple that connection of point clouds will often has to be realized by
single points (Wang et al., 2009). The calculated transformation
parameters between successive 3D-camera point clouds give in-
formation of the current position of the robot. This mapping and
localization algorithm is called Simultaneous Localization And
Mapping or Current Mapping and Localization.

At the end of a chain of transformations the whole high density
point cloud gives a 3D-representation of the agricultural environ-
ment. Based on this data, it is also possible to determine plant pa-
rameters such as height, density and volume (Hoso1 and Omasa,
2009). Moreover the mapped point can used to navigate in an
autonomous watering process.

2 BASICS OF SENSOR AND DATA

The data used in this study were acquired by a PMD-CamCube
2.0 (Tab. [T) mounted on a mobile robot driving.

Basics

The advantages of 3D-cameras against stereo systems and laser
scanners can be seen in the non-sequential data acquisition mode,
their high temporal resolution and the fact that intensity and range
images are recorded simultaneously.
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On the other hand measurement field is limit by wavelength be-
cause of an ambiguity problem. Therefore the maximum visible
range is A/2. The accuracy of the distance for each pixel de-
pends on the measurement condition (e.g. background illumina-
tion) and object properties(e.g. color and surface) (Kahlmann et
al., 2006) (Westtfeld, 2007). Improvements of the data recording
technology and calibration of sensor may increase the quality and
accuracy (Kahlmann, 2007) (Westfeld, 2007).

High precise estimated camera constant ¢, position of principle
point (zp, y ) and distortion parameters can recover the 3D points
accurate by 2D data (Fig. ).
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Figure 2: ray course for recovering object point (Kahlmann,
2007)
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3 WORKFLOW

This section describes the process of acquiring images for suc-
cessful transformation of point cloud and pose estimation of mo-
bile robot (Fig. [3). Most popular algorithms for robust and fast
feature extraction are Scale Invariant Feature Transform (SIFT)
(Lowe, 1999) and Speed-Up Robust Features (SURF) (Bay et
al., 2008). Both are scale and rotation invariant and help to detect
feature points in two following images. This is a fast and effi-
cient method to find corresponding points and determine param-
eters of transformation. For robust outlier detection of transfor-
mation parameters a RANdom SAmple Consensus (RANSAC)
(Fischler and Bolles, 1981) is used. Valid transformation param-
eters estimated by RANSAC include the most inliers within a
small threshold. After robust outlier test a fine fit named Method
of Least Squares (MLS) follows. The calculated parameters of
transformation represents values to connect local point cloud to
global system and pose estimation of mobile robot.

After transforming points into global system the existing space
will divide in same sized cubes called volume elements (voxel).
Voxel are the 3D opposite of area based picture elements (pixel).

and voxel size. It is possible to filter voxel data with morpho-
logical operators to increase quality and quantity of data like in
images. At the end it is possible to sum up all voxels and calculate
the volume of plant canopy in object space.
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Figure 3: Flowchart of processing (modify of (Wang et al., 2009))
3.1 Intensity Image

The PMD CamCube 2.0 consists of a 2D image sensor (204x204
pixel) and two light sources, which emit illumination in near in-
frared (NIR). To determine the intensity value of each pixel the
modulated sinusoidal signal is sampled four times (Chapter [2)
and an average value is calculated (Eq. [T). In spite of small res-
olution of sensor some feature extraction methods deliver best
results. That is important to find corresponding points and get
transformation parameters.

3.2 SUREF Feature Extraction

There is a large number of scale and rotation invariant feature

The number of voxels depends on size of recording object points 53¢ extraction methods to find corresponding point between images.
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SIFT (Lowe, 1999) and SURF (Bay et al., 2008) are the most
popular and effective methods. The main advantage of these al-
gorithms are to determine feature descriptors that allow quick
comparisons with other features. (Wang et al., 2009) compare
SIFT and SURF and discover that SURF detect more features in

small sensor configuration. To detect some outliers it is useful to
choose a threshold for matching the feature points. The matching
results give information about reliability of matching. Small val-
ues could be an advice for bad or wrong matching. Inside SURF
it is useful to choose a high threshold (Fig. ) with the result of
fewer points but better reliability.

Figure 4: Corresponding point with SURF in two following im-
ages

3.3 Range Image

Distance measurement of 3D-cameras based on phase shift method
(chapter 2). Modulate light in NIR is send with maximum wave-
length of 14m. Calculation of distances will be realized by com-
parison of start and end phase. Results are saved in a 16-bit raw
image. Distance values from O to 7m were associated with values
from 0 to 65536 (16-bit). So the theoretical distance resolution is
ca. 0.1mm.

3.4 Range Image Filter

Range data of short integration time are subject of strong noise
but allow acquire images while fast movements. Reasons are
multi path effects and different behavior of reflection by surfaces
(Gudmundsson, 20006), (Gut, 2004). The additional usage of am-
plitude values can help to minimize noise. Therefore pixels with
unusually high or low amplitudes were eliminated. These pixels
could be influenced by multi path or some other errors.
Smoothing data with median is another kind of outlier elimina-
tion. The advantage of median filter is independence of single
outliers.

Avoid obstacles close to the robot is one of the main achieve-
ments. Therefore it is important to map objects and analyze their
position. At first separating background and close-range objects
with static background filter of 1m. Only objects with distances
under 1m are important for obstacle recognition.

3.5 Obstacle Recognition

After filtering close-range information and background an algo-
rithm have to find drive line between plants or obstacles. In this
situation a constraint is given. On left and right side of image are
plants so it is necessary to divide the point cloud into two clus-
ters. A fast algorithm which does that is k-mean filter. It needs
only the number of expected clusters and divide point cloud by
itself (Fig. 5). k-mean is a fast algorithm for clustering and seg-
mentation but works not always correct. If there are found two
clusters a bounding box deliver height and width of obstacle. If
one of the two boxes cut a predefined rectangle, it will follow a
command to control in another direction.
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Figure 5: Clustering of point cloud
3.6 Transformation

Base of further 3D data processing is the transformation in a
global coordinate system. The origin of global reference system
is focal point of first camera position. Other viewpoints will be
transformed. The determination of parameters includes two parts.
On the one hand a 3-DOF RANSAC is used and on the other hand
a 6-DOF least squares fitting. With SURF (chapter 3.2) detected
corresponding points in two following images will be expanded
to 3D data with information from range image. For a unique solu-
tion of 6-DOF equation three points are needed. Usually there are
more than three corresponding points. So a graduation between
all parameters is use to get the best result.

At first a robust 3-DOF (eq. RANSAC is used to determine
translation parameters (Xo, Yo, Zo). RANSAC picks randomly
one point and calculates the parameters. Parameters that include
the most point pairs within a small border were set up as valid
translation parameters. Point pairs outside defined border are out-
liers and have no further influence.

Valid points are used for 6-DOF (eq. [§) fine fit with MLS. MLS
needs approximate values for computation. Values for transla-
tion are given by RANSAC. Approximation for rotation angles
w,p,k were set to zero, because movements especially rotations
are small from image to image. Local calculated transformation
parameters are sum up and represents global parameters.
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3.7 Voxel Space

After the transformation into a global reference system it is pos-
sible to approximate the density and height of plants. The object
space with all 3D points will be estimated by height, width and
depth and divided into user-defined voxels. If a voxel do not in-
clude points it is probably plant free space. Next step of data
processing will be include filter methods of 3D morphological
operators (Fig. [6).

4 RESULTS

The developed algorithm is an efficient and fast method to ana-

540 lyze combine data of range and intensity. Created 3D data are
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Figure 6: 3D morphologic kernels (Schmidt, 2010)

linked to a global system and so it is possible to analyze whole
object space.

4.1 Obstacle Recognition

Amplitude and range image are helpful to analyze the reliabil-
ity of record data. Outliers with bad amplitudes caused by multi
path could be eliminate. The additional background filter of range
image supports a higher level of object priority. This combined
information are the base of obstacle recognition and robot con-
trol. Segmentation with k-mean is a fast method to find clusters
of known numbers. K-mean algorithm delivers always a solution,
but it is not check for correctness. So it is possible that segmen-
tation and classification are false and also further robot control.
The robot will probably crash with obstacle.

4.2 Transformation

The estimation of parameters with RANSAC and MLS represents
on the one hand a robust outlier test and on the other hand a fine
fit with conclusion of accuracy.

For RANSAC algorithm you have to set iteration number and
maximum tolerance to model. For absolute measurement ac-
curacy of CamCube best results were reached with 100 itera-
tions and lcm tolerance. On average there was found 70 cor-
responding points and 30 point pairs pass the outlier test. Num-
ber of founded feature points depends on contrast and existing
intensity variation. After checking corresponding points for val- (a) 3D points and robot path
idation a fine fit is planned. Approximate values for transla-
tion are given by RANSAC and rotation angles were set to zero.
Standard deviation of translation is maximum o X = 1.92mm,
oYy = 1.95mm, 0Zo = 1.87mm. So the maximum 3D de-
viation is 0 Xo,, = 3.3mm. The standard deviation of rota-
tion could not estimate exactly, because quaternions were used.
Quaternions used to avoid singular matrices in MLS. In result
rotation angles was small with < 2°. Standard deviations are
increasing step by step because variance propagation. Therefore
following viewpoints own a bigger error ellipse (fig. [7).

(b) Voxel space

Figure 7: Increasing standard deviation by variance propagation
(Cole and Newman, 2006) Figure 8: 3D view of scene

4.3 Voxel Space

To divide object space in smaller voxel cells has some advan-
tages for analysis. There are information about position, height
and density of plants. This requires to a optimal voxel size. Large
voxel cells have the drawback of fewer details of plants and the
density approximation will be false. This also have a disadvan-
tage for filtering with morphological operators. If there are too
small voxels the time of calculation will be higher. 541
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5 CONCLUSIONS AND FUTURE WORK

The descriptive algorithm enables connecting 3D point clouds via
6-DOF transformation and analyzes them. At the moment robot
control depending 100% on reliability of k-mean clustering. So
if k-mean is wrong the robot probably crashes. So the estimated
control has to validate with other controls before. Computation
time is also an existing problem. The velocity of robot has to
be slow for correct analyzing and controlling. If movements of
robot to fast, there is no time to recognize obstacles and avoid
collusion. At the beginning of transformation there is a small
standard deviation. Caused by variance propagation the transfor-
mation and position of robot will be uncertain. A continuously
reset with Global Positioning System (GPS) will minimize the
error. Next step of work include a detailed voxel analysis.
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