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ABSTRACT: 

 

The classic perspective projection is mostly used when calibrating a camera. Although this approach is fairly developed and often 

suitable, it is not necessarily adequate to model any camera system like fish-eyes or catadioptrics. The perspective projection is not 

applicable when field of views reach 180° and beyond. In this case an appropriate model for a particular non perspective camera has 

to be used. Having an unknown camera system a generic camera model is required. This paper discusses a variety of parametric and 

generic camera models. These models will be validated subsequently using different camera systems. A unified approach of deriving 

initial parameter guesses for subsequent parameter optimisation is presented. Experimental results prove that generic camera models 

perform as accurate as a particular parametric model would do. Furthermore, there is no previous knowledge about the camera 

system needed. 

 

 

                                                 
*  Corresponding author.  

1. INTRODUCTION 

Camera calibration is a fundamental task in photogrammetry to 

derive accurate measurements in object space from camera 

images. The perspective projection is the camera model used 

most and therefore well-established (Brown, 1971; Tsai, 1992). 

This classic approach models most common types of cameras 

exactly enough to yield sub-pixel accuracy in image space. 

Despite that, there are many camera systems that cannot be 

calibrated at all or not precisely enough using a perspective 

camera model. However, these particular cameras can be 

calibrated by approximating the deviation from perspective 

projection by using a distortion model. Many different types of 

distortion models have been developed (Brown, 1971; Kraus 

2004; Luhmann 2006). Originally, these distortion models were 

implemented to compensate lens errors caused by physical 

effects or other manufacturing issues. Nevertheless, distortion 

models are potentially applicable to model non-perspective 

cameras accurately by using them in addition to the classic 

perspective camera model adjustment. Although this extended 

perspective projection yields sufficient accuracy at the expense 

of additional distortion parameters it will probably fail having 

wide field of views. So called catadioptric or fish-eye lenses 

have FOV’s beyond 180° and cannot be modelled using a 

perspective projection. However, there are parametric models 

that approximate these types of lenses and other non-

perspective lenses precisely (Rahul et al., 2000; Schneider et al. 

2009; Zhang, 2000). When calibrating a general camera system 

with an unknown lens it is difficult to decide in advance which 

particular model fits the real type of camera projection best. To 

avoid the decision for a proper camera model, one single model 

is needed that approximates most common types of projection. 

Such a general camera model was introduced and evaluated by 

different authors for particular applications (Basu et al., 1995; 

Claus et al., 2005; Gennery, 2006; Heikkilä, 2006; Orekhov, 

2007). This generic model is suitable to calibrate a wide variety 

of commonly used camera systems including perspective and 

non-perspective types of projection. Despite the generic 

character of such a model an extension by an adequate 

distortion model is often necessary to compensate additional 

lens errors. 

The classic calibration approach uses corresponding object and 

image points. These correspondences are used to estimate the 

model’s parameters. A maximum likelihood estimation (MLE) 

algorithm is used to derive the final model parameters 

(Markwardt, 2008). Due to the nonlinearity of the proposed 

generic models initial parameter guesses are needed for 

initialisation of the estimation algorithm. In contrast, a 

goniometer or collimator setup is used to derive camera model’s 

parameter directly (Grießbach et al., 2010). 

 

In this paper a closed-form DLT approach (Abdel-Aziz et al., 

1971) is used to derive a very basic guess of the model’s 

parameter. Afterwards this basic guess is improved by fitting an 

equisolid-angle camera model. These refined parameters are 

excellent initial parameter values that can directly be used to 

derive final parameter values. This yields a unified calibration 

procedure that does not need any prior camera information like 

focal length or type of projection. Absolutely no parameters 

have to be set up in advance. Furthermore, there is no particular 

calibration target needed. Either a planar or a 3D target is 

suitable. This whole calibration approach will be validated 

using real camera systems ranging from normal, wide-angle, 

fish-eye to catadioptric lenses. Additionally this unified 

approach is compared to the results of an industrial calibration 

software and results of Zhang (Zhang, 2000). 

 

2. CAMERA MODELS 

This section introduces the perspective, other parametric and 

generic camera models used for the calibration approach. Figure 

1 displays the classic perspective camera model. An object point 
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P is projected onto an image plane. The corresponding image 

point P’, the object point P and the projection centre O’ form a 

straight line. The total set of parameters can be subdivided into 

parameters of exterior orientation (red colour) and interior 

orientation (blue colour). The essential elements , ,r  defining 

the type of projection are marked green in the figure. The 

depicted relationship between parameters can be used to derive 

a general projection equation. 

 

 
Figure 1. Perspective Camera Model 

 

An image point may be expressed in polar coordinates: 
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Using the function atan2 to yield the azimuthal angle   

ensures the correct quadrant. This function is defined as 

follows: 
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The inclination angle is the angle between the negative z axis 

and the incoming object ray. It is defined as: 
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The radial distance r is a function of  and further parameters 

 (e.g. focal length). It is given by: 

 

  ,r f    (4) 

 

Transformation and substitution of (4), (3), (2) in (1) yield a 

general projection equation as follows: 

 

 
2 2 2

2 2 2

2 2

2 2

acos

a

,

os ,c

X
x f

X X Y

Y
y f

X X Y

Z

Y Z

Z

Y Z

 
   

 

 


 
  

  

 
   

 
 

  

 (5) 

2.1 Perspective camera model 

The perspective camera model is characterised by the following 

radial distance function: 

 

 ·tanr c   (6) 

 

 

By inserting equation (6) into (5) and simplifying it, it equals 

the commonly known collinearity equations: 

 

 

 

x
x c

z

y
y c

z

  

  

 (7) 
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is the exterior orientation. The rotation matrix is a function of 

three angles , ,   . 

 

2.2 Parametric camera models 

To incorporate other camera models the radial distance function 

(6) has to be accordingly replaced. The following non-

perspective camera models are often used: 

 

 Stereographic projection:    t2
2

anr c


  

 Equidistant projection:        r c  

 Equisolid-angle projection: s2
2

inr c


  

 Orthogonal projection:        sinr c   

 

Figure 2 shows the plot of these parametric models. The radial 

distance r is plotted over the inclination angle . The 

perspective and orthogonal projection have an inappropriate 

characteristic concerning wide inclination angles. Nevertheless, 

each model may be used when calibrating a particular camera. 

 

2.3 Generic camera models 

To circumvent the decision for a particular parametric model 

and to calibrate cameras which do not follow one of the 

mentioned parametric models a general model is needed. This 

model is a generic function (4) which approximates the 

parametric models. A polynomial with odd powers is 

appropriate to serve as a generic camera model since it 

approximates trigonometric functions (Kannala, 2006; Heikkilä 

et al., 2006). Therefore it is able to model the mentioned 

parametric models. The polynomial may be defined as follows: 
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To derive the final camera model, equation (8) is to be 

substituted in (5). Fixing the polynomial degree to 5p   yields 
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a generic camera model that is able to replace many types of 

projection (see 2.2). Furthermore, field of views may exceed the 

problematic 90° inclination angle limit. The parameter 

0k corresponds to the classic focal length c. 

 

 
Figure 2. Parametric Camera Models: perspective – red line; 

stereographic – blue line; equidistant – green line; 

equisolid-angle – purple line; orthogonal – orange 

line 

 

Another approach of approximating the parametric camera 

models is a direct trigonometric one. The proposed models may 

be merged to the following expression (Gennery, 2006): 
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Which can be reformulated to cope with 0L  : 
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These two generic approaches should perform equally when 

approximating the proposed trigonometric functions in 2.2. 

Since the polynomial model already incorporates a radial 

component there is no need for further radial distortion 

compensation. Thus, the polynomial and trigonometric camera 

model base on an equally numbered parameter set. 

 

2.4 Distortion model 

To account for the difference between the actual camera 

projection and the camera model which is caused by lens 

effects, a distortion model is needed (Brown, 1971). In general 

such a model consists of four major elements: 

 

 

 

 

 

 

 Principle point shift 
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 Radial distortion 

 
 

 

2 4 6

rad 1 2 3

2 4 6

rad 1 2 3

x u K r K r K r

y v K r K r K r

   

   
 (12) 

 Tangential distortion 
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 Affinity and shear 
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aff 0
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y
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In this case, the radial distortion is fixed to the 6th degree while 

the tangential distortion is fixed to the 2nd degree. In most cases 

a higher degree of distortion yields no significant gain in 

accuracy. 

 

3. PARAMETER ADJUSTMENT 

To calibrate a camera system its model parameters have to be 

determined. Often a maximum likelihood estimator (MLE) is 

used to carry out the final parameter estimation. Since the 

proposed models are non-linear the camera model has to be 

linearised in order to run a MLE. The initial parameter values 

have to be accurately enough to linearise the camera model. The 

total set of parameter values consists of parameters 

of exterior orientation 

 

  , , , , ,
ext 0 0 0

P X Y Z     (15) 

 

of interior orientation 

 

  int 0 0, ,P x y c   (16) 

 

of polynomial or trigonometric model 

 

  pol tri1 iP k k P L   (17) 

 

and a set of distortion model parameters 

 

  dist 1 2 3 1 2 1 2, , , , , ,P K K K P P B B  (18) 

 

A Direct Linear Transformation (DLT) yields the essential 

initial values. 

 

3.1 Direct Linear Transformation 

A direct linear correspondence between a 3D object and image 

point is given by: 
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These DLT parameters equal the parameter set of a perspective 

camera model extended by a scaling and shearing parameter: 
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where       i, j,k   = unit vectors of the rotation matrix 

                 
0X        = is the projection centre 

                  1 2,b b  = scaling and shearing parameters 

 

This approach is applicable if there is no error at all: 0  Ax l . 

In reality there is an error incorporated (Kraus, 1996): 

 

 0     Ax l v Ax l  (21) 

 

 

Assuming an error v, equation (19) becomes: 
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In that case, the direct linear transformation becomes non-linear 

and has to be solved iteratively. Here  1cX  is treated as a 

constant. Starting with  1 1 cX  it can be calculated in every 

step and be used in the subsequent one. This iteration is to be 

repeated until the parameter set converges. This iteration 

approach is particularly essential when dealing with non-

perspective camera systems since they differ from perspective 

projection to much. 

The result of this initial parameter estimation is a set of the 

following parameters: 

 

  1DLT 0 0 0 0 0 2, , , , , , , , , ,P X Y Z x y c b b      (23) 

 

 

In case of a polynomial based camera model 
1k corresponds to 

c. All other parameters  2 pk k will be set initially to zero. In 

case of trigonometric camera model the parameter L is set to an 

equisolid-angle projection (see 3.2). All other distortion 

parameters are initially set to zero. 

In case of a planar target where the z axis is zero, equation (19) 

reduces to: 
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3.2 Refinement Step 

The DLT-derived initial parameter values do not suffice for 

strong non-perspective cameras (e.g. fish-eye). Therefore, a 

refinement step is added where the DLT parameters are fitted to 

a parametric camera model. At the first glance, the 

trigonometric model (9) seems to be adequate since it is 

potentially able to model all proposed parametric projections. 

However, experiments proved that this approach does not 

converge in every case. That is why the equisolid-angle model 

was chosen. Accurately enough initial parameter values for 

subsequent final parameter estimation can be achieved even in 

perspective case. Furthermore, it yields a stable solution in case 

of inclination angle reaches 90° and beyond. 

The actual refinement is carried out using a LM algorithm (see 

3.3) 

 

3.3 Final Adjustment 

The total parameter set of the camera model is adjusted using a 

MLE. An implementation of the often used Levenberg-

Marquardt-Algorithm (LMA) (Markwardt, 2008) was chosen. 

This optimisation algorithm has been applied in many 

adjustment tasks throughout the literature and proved to be 

robust and efficient. In this case the LMA was used to minimise 

the total image point rms of the camera model. The rms is a 

practical measure to compare different models and to judge the 

overall accuracy of the camera model. 

 

4. CAMERA SYSTEMS AND EXPERIMENTAL SETUP 

In order to validate the overall accuracy and general 

applicability of the proposed calibration approach 17 different 

camera systems have been used. All these camera systems differ 

in sensor sizes, lenses and the amount of control points and 

images that were taken. 

Additionally, some of these camera systems were mounted into 

weather protection cases. The panes of these cases can cause 

additional refractions of imaging rays and therefore alter the 

camera’s true type of projection. Depending on the particular 

setup these cases may prevent a successful calibration using 

parametric camera models. Table I displays the used camera 

systems: The professional SLR Nikon D2Xs, different off-the-

shelf consumer class cameras (Cannon G3, Pentax Optio W60 

and Panasonic FZ8), three GigE professional cameras (DBK 

8.5mm lens, DBK 4.8mm lens and DBK 3.5mm lens), three 

protection case mounted camera systems (DBK 8 mm lens (no. 

4), DBK 5mm lens (no. 9) and MVcam 3.8mm lens (no. 11)), 

two proprietary camera systems (DLRcam 7mm lens and 

DLRcam 2.2mm lens), one Webcam, a fish-eye lens camera 

system (no. 14) and two catadioptric camera systems (no. 15 

and no. 16).  None of the chosen camera systems follow the 

orthogonal (or sine-law) projection. Although, no system fits 

the orthogonal projection best this camera model can still be 

used in some cases to derive an accurate calibration (no. 8, 9 

and 12). 

To compare this paper’s calibration approach with other 

authors, Zhang’s data set has been evaluated (no. 17) as well. It 

was chosen because his data set is publically accessible. 

Additionally, the commercial calibration software Australis was 

used as a reference. As Australis incorporates the perspective 

camera model it was not able to successfully calibrate every 

evaluated camera system. 
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No. Specifications 

 Camera/Lens Type of  

Projection 

C 

[mm] 

1 D2Xs/Nikkor Perspective 24.5 

2 G3/Cannon Stereographic 9.4 

3 DBK/Cosimcar Stereographic 8.5 

4 DBK/Computar Perspective 8.0 

5 Optio W60/Pentax Stereographic 7.3 

6 DLRcam Perspective 7.0 

7 DMC FZ8/Leica Perspective 6.1 

8 Logitech/Webcam Stereographic 5.1 

9 DBK/Computar Perspective 4.9 

10 DBK/Cosimcar Stereographic 4.9 

11 MVcam/Computar Perspective 3.8 

12 DBK/Kowa Equisolid-angle 3.6 

13 DLRcam Equisolid-angle 2.2 

14 DBK/Fujion Equidistant 1.8 

15 PicSight/Computar Stereographic 0.9 

16 CF-2000 Stereographic 0.6 

17 PULNiX Stereographic 6.2 

Table 1. Camera System Specifications 

 

A commercial bundle adjustment using the D2Xs with tripod, 

proper lightning and calibrated scale bars yielded the points of 

the calibration target. The target consists of black circled 

markers on a white wall. The room is air-conditioned providing 

a stable temperature of about 22°C. 120 images were taken 

counting about 175 image points each. The camera and the 

scales are certified both by the DKD*. This ensures a proper 

setting and results in an overall object point sigma of 20µm. 

Figure 3 shows the calibration target in the corner of the room.  

 

Figure 3. Calibration Target 

 

Taking each camera system from table 1 between 8 and 50 

images were taken at a distance of approximately 3-5m from 

that target. This leads to a range of 300 up to 7500 control 

points per camera system. Least squares ellipse fitting was used 

to measure the corresponding points in the images (Heikkilä, 

2000). According to Heikkilä the accuracy of centre point 

determination depends on the particular camera but is usually 

clearly sub-pixel accurate. All calibration data is available for 

evaluation purposes. Do not hesitate to contact the authors for a 

download link. 

                                                 
* Deutsche Kalibrierdienst (accredited calibration service) 

5. EXPERIMENTAL RESULTS 

In the following section the experimental results of the camera 

calibrations are presented. 

In the beginning initial parameter values have to be derived. 

The combination of a direct linear transformation followed by a 

refinement step yield accurately enough initial parameters since 

the final adjustment converges in every case successfully. The 

initialisation step relies on a set free of erroneous control points. 

Since the DLT approach is very liable to gross errors the control 

points set has to be chosen carefully. A prior step of checking 

for correspondence errors has to be implemented if needed. In 

this work all calibration data sets were manually verified. After 

the successful parameter initialisation all camera systems were 

calibrated using one of the following three camera models: 

 

 The best fitting (see table 1) parametric camera model 

extended by a full distortion model (see 2.4). 

Therefore, this PAR+FD model has 10 parameters in 

total.  

 A generic trigonometric based camera model (10) 

extended by a full distortion model. This TRI+FD 

model incorporates 11. 

 The polynomial based generic camera model (8) 

extended by a reduced distortion model. The radial 

term of distortion is fully covered by the polynomial 

camera model and can be neglected. Thus, this model 

also has 11 parameters. 

 

Note, that these parameter amounts exclude 6 parameters of 

exterior orientation for each image. The distortion model is not 

needed in every case. It often hardly reduces the rms values at 

the expense of seven additional parameters. However, in some 

cases the distortion model is useful to compensate significant 

lens effects. In terms of generality a distortion model is 

mandatorily added. There are attempts to choose the complexity 

of a distortion model automatically (Orekhov, 2007). This 

approach is not further considered in this paper. 

As a reference calibration the commercial calibration software 

Australis was used to calibrate every camera system. Since this 

software uses a perspective projection model extended by the 

same distortion model used in this work (AUS) it has 10 

parameters plus 6 parameters of exterior orientation for each 

image, like the PAR+FD model has. Table 2 lists all resulting 

rms values in image space and pixel. Firstly, all tested camera 

systems achieve sub pixel accuracy no matter what model was 

used. Secondly, both of the generic models perform quite 

equally. In addition, they outperform the reference clearly when 

type of projection becomes strongly non-perspective. 

Furthermore, the generic model proved to accurately 

approximate all proposed parametric camera models. Despite 

some cases an accuracy of 10th a pixel is possible. Zhang 

achieved an rms error of 0.335px using data set no. 17. Even 

reducing the POL+RD to the same number of parameters Zhang 

used (by neglecting the distortion model = 7 parameters), an 

rms value of 0.238px can be achieved. The reason why the 

catadioptric system no. 16 performs comparably bad is the 

strong chromatic aberration, resulting in a very poor image 

quality. The reason why the other catadioptric system fails to 

achieve rms values as good as the other systems could not be 

found. Nevertheless, sub pixel accuracy could be achieved. 
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No. PAR+F

D 

TRI+F

D 

POL+RD AUS 

1 0.082 0.082 0.082 0.082 

2 0.203 0.201 0.202 0.21 

3 0.029 0.029 0.029 0.03 

4 0.086 0.087 0.086 0.06 

5 0.118 0.110 0.088 0.136 

6 0.015 0.015 0.015 0.015 

7 0.162 0.163 0.163 0.173 

8 0.043 0.043 0.042 0.044 

9 0.080 0.081 0.078 0.042 

10 0.058 0.058 0.058 0.071 

11 0.059 0.055 0.052 fail 

12 0.051 0.051 0.051 0.303 

13 0.061 0.052 0.052 2.95 

14 0.093 0.093 0.092 33.71 

15 0.517 0.505 0.509 16.42 

16 0.498 0.387 0.321 fail 

17 0.109 0.109 0.109 0.112 

Table 2. Experimental Rms Values 

 

6. SUMMARY AND CONCLUSION 

The experimental results indicate that the proposed generic 

camera models are applicable to calibrate a wide variety of 

camera types. Catadioptric, fish-eye, wide-angle and common 

focal length camera systems were calibrated using 

comparatively simple and well known means. Absolutely no 

previous knowledge about the camera system that is to be 

calibrated is needed. Initially, a direct linear transformation was 

used to derive initial values for the model’s parameters. Due to 

the non-perspective characteristics of many of the examined 

camera systems a further refinement step was introduced. The 

initial parameter values are fitted to an equisolid-angle model. 

This model accepts inclination angles greater than 90°. The 

subsequent final adjustment of parameters using the proposed 

LMA yields acceptable errors (table 2) in terms of sub pixel 

accuracy. A precision up to 1/10th a pixel is achievable. With 

exception of the catadioptric camera systems the achieved 

image rms for all tested systems are about one order below sub 

pixel accuracy in image space. Furthermore, table 2 emphasises 

the applicability of the generic non-parametric models as 

substitution for the proposed parametric models. In addition, the 

overall accuracy of the generic models is comparable to the 

accuracy of the suitable particular parametric model. Even 

though camera cases were used, which caused additional 

refraction of light rays at media interfaces, an accurately enough 

modelling is possible. Future work will focus on accurately 

modelling non-perspective projections like catadioptrics with 

the proposed generic approach. Those lenses have not yielded 

satisfying results in terms of image rms. 
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