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ABSTRACT: 

 

In the area of advanced driver assistance and automation systems knowledge about the vehicle environment is becoming more and 

more important in order to increase traffic safety. This paper is concerned with the detection and tracking of objects in the proximity 

of the ego-vehicle while driving on highways. For this purpose, a camera sensor and a laser scanner are used. The processed data of 

the sensors is then fused at object level in a competitive way. The paper focuses on the generation of object observations by applying 

the mentioned sensors. In the case of the camera system, an image processing method based on texture information is presented. The 

texture information is adaptively calculated in order to be independent of the lighting conditions. Taking into account knowledge 

about the image structure in driving situations, texture segments are classified and object observations are generated. In comparison 

to other methods, objects are detected independently of any features, model and movement assumptions. For object generation from 

laser scanner data, a method characterizing detected object contours by means of a shape indicator (long, corner, round, concave 

etc.) is proposed. Different to other works in this field, in the method presented here explicitly obtains the objects’ optimal reference 

point and the observability of the objects’ components. The experiments conducted both with simulated and real data show the 

plausibility of the methods to be used as cues for an object fusion system. 

 

 

1. INTRODUCTION 

In the area of advanced driver assistance and automation 

systems the focus is often set on driving safety, traffic 

efficiency, and comfort. For these purposes, knowledge about 

the vehicle environment is becoming more and more important, 

such as safety aspects of the road and road signs, about other 

vehicles and pedestrians, and about weather conditions. This 

paper focuses on object detection by means of two cues, a 

camera and a laser scanner, which are then fused in a further 

step. 

 

Detection systems are often based on a single sensor. However, 

using multiple cues in a fusion system offers important 

advantages, such as increased detection scope, accuracy, 

reliability, availability and robustness. Since this increases the 

system’s complexity, fusion mechanisms must be applied 

carefully. Fusion strategies are applied at different abstraction 

levels. Sensor and feature level fusion is usually done in a 

cooperative way (e.g. validation through a second sensor). On 

the other hand, object and tracking level fusion usually follows 

a competitive strategy. For this purpose, the data is first pre-

processed independently in each sensor and then brought 

together at a common level. The lower level strategies often 

reach a better performance and availability, while those at a 

higher level are more reliable (in case of sensor failure), 

modular and expandable, as well as decoupled from the sensing 

systems. 

 

In order to fuse at object level, every sensor cue must be 

prepared to provide object observations. These tasks are 

independent of each other and of the fusing system, which 

increases reliability. Feedback loops are avoided, in order to 

reduce the negative memory effects of false positives (phantom 

objects) and outliers. 

 

The aim of this paper is to present methods to process camera 

and laser scanner data as cues of an object detection system 

consisting of an object level fusion. Both sensors are integrated 

in the experimental vehicle ViewCar (www.dlr.de/ts), presented 

in Figure 1. The applied monocular camera (f=3.5 mm objective 

and 7.5 µm pixel size) is used in gray level mode. The applied 

laser scanner is a profiler with four parallel beams that are pre-

processed in the sensor into one reflection point per direction 

(120° aperture, with angle resolution between 0.125° and 0.5°). 

The sensors are focused on the frontal area of the vehicle. 

Desirable properties of object detection cues are: availability 

(processing rate), confidence (high true positive rate, low false 

positive rate), (self-) validation, and accuracy estimation. 

 

 

 
 
Figure 1.  Experimental platform, the ViewCar, containing a 

laser scanner and a camera (among other sensors). 
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The paper is structured as follows. After the introduction, 

motivation and aims given in this section, the next section deals 

with related work in the area of object detection. Section 3 gives 

an overview of the applied system structure and fusion 

mechanisms, followed by the detailed description of the 

methods for camera images (Section 4) and laser scanner data 

(Section 5). In Section 6, the experiments conducted to test the 

methods are presented and discussed. Finally, Section 7 

presents conclusions drawn from the experiments and gives 

outlook of possible future work. 

 

 

2. RELATED WORK 

Object detection and tracking is a major topic in the area of 

driver assistance and automation systems. While many systems 

have been based on a single sensor, an increasing trend to 

fusion based solutions can be observed. In this section, works 

related to the extraction of object observations from sensor data 

are presented. At this level, no further attention is paid whether 

the extracted observations are used in a single sensor tracking 

system or in combination with other sensors in a fusion system. 

While sensors such as stereo-vision, radar, and multi-beam lidar 

are also used by some systems, this paper focuses on monocular 

vision and laser scanner based systems. 

 

A number of works use a camera as detecting sensor in driving 

situations. The methods found in the bibliography can be 

divided in the following groups. Model based methods are 

trained to detect target objects, e.g. by means of Haar wavelet 

features (Viola and Jones, 2001). In this group, objects looking 

differently than the trained models cannot be detected. A second 

group of methods is based on optical flow and the segmentation 

of image regions with similar movement, e.g. (Giachetti, 1998) 

and (Wohlfeil, 2008). For these systems, static objects and 

objects moving with the same speed as the ego-vehicle or close 

to the vanishing point are difficult to detect. As a third 

heterogeneous group, methods based on object features can be 

found, which often lean on a given object model (like cuboid or 

polyhedron). Common features are the object shadow (as a 

horizontal edge), vertical edges, contour lines, vehicle wheels, 

and symmetry of the vehicle’s rear, as in (Bensrhair, 2001), 

(Wender, 2008), (Neumaier, 2007) and (Wohlfeil, 2008). These 

methods assume that the target objects have certain features and 

those are visible in the images, which is not always guaranteed. 

In this paper, a new method based on texture feature and the 

structure of the texture image is developed and tested. Texture 

features have the advantage that object regions stand out even 

though no clear edges, no clear movement, or no expected 

features might be visible. Thus, the method is appropriate to be 

used even with low quality images. 

 

On the other hand, several references concerning object 

detection in driving situations applying a laser scanner can be 

found in the bibliography. Since the data provided by the sensor 

already represents 3D points, the two main issues of object 

detection consist of data segmentation and model fitting. Sensor 

data segmentation is usually done depending on the distance 

and relative velocity between consecutive reflection points of 

the scan – see (Dietmayer, 2001). The fitting to an object model 

is done in different ways. (Labayrade, 2005) reduces the object 

to a point for collision avoidance. (Dietmayer, 2001) and 

(Wender, 2008) consider the two extreme contour points and 

the closest reflection point to the sensor. Depending on these 

three points the object is then classified in O-shaped, I-shaped 

or L-shaped. In (Lindner, 2008), the rotating-calipers-algorithm 

is applied to fit the object into a box. This and other authors 

also process sensor data by means of an occupancy grid 

algorithm. All these methods do not consider characterizing 

round or concave contours. In this paper, a new method to 

detect the object basic shape in a differentiated way is 

presented, based on the internal contour angles. Besides, the 

optimal object reference point and the observability of the 

object sides are calculated. 

 

 

3. SYSTEM STRUCTURE 

The methods presented in this paper are embedded in a multi-

layer multi-sensor data fusion system, which has been 

introduced in (Catalá-Prat, 2008) and (Catalá-Prat, 2008b). In 

Figure 2, the modular structure of the complete fusion system is 

presented. The tasks are divided in different abstraction levels 

(sensor level, object level, and application level), which are 

explained in the following.  

 

 

 
 
Figure 2.  Modular system structure of the multi-sensor multi-

level fusion system. 

 

At sensor level, synchronization and calibration issues are 

treated. The latter is especially important since vehicle 

movements produce sensor data vibrations and loss of validity 

of alignment parameters. Additionally and to support the task of 

object detection, a method to detect the driving corridor has 

been developed. By means of driving corridor information, the 

object detection task can be filtered, and the amount of data can 

be strongly reduced. This means a gain in both processing speed 

and confidence. The developed method is based on the low 

level cooperative fusion of camera data (lane markers), 

positioning and information from digital maps (number of lanes 

of current road), and laser scanner data (static objects at road 

boundaries). Some details about this method have been 

presented in (Catalá-Prat, 2008). 

 

At the application level, a danger recognition based on the 

statistical detection of atypical events has been developed. At 

this abstract level, the inclusion of other sources than object 

data for danger recognition, such as road information, is also 

possible. This module is explained in (Catalá-Prat, 2008b). 

 

The presented system focuses on the detection and tracking of 

object information at object level. The observations extracted 

from camera and laser scanner data – explained in the following 

– are the input of the object fusion. In the fusion kernel, each 

object (object hypothesis) is tracked by a filter. In this work, an 

asynchronous information filter is applied, (Rao, 1993). This 
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filter can be understood as a reformulation of the well-known 

Kalman filter, and is appropriate for the estimation of object 

state based on observations coming from different sensors and 

with different data rates. 

 

In each filter step, all object hypotheses are predicted to the new 

observation time, compared and associated to the incoming 

observations. With this data, the object hypotheses are then 

updated, and the object list is administrated.  

 

All incoming observations as well as the fused object 

hypotheses are defined based on the same object model. This 

represents a reduction of the fusion costs. However, it also 

implies an increase of the pre-processing complexity of object 

detection (extraction of observations, including adaptation of 

uncertainty). The object model applied for object tracking and 

fusion consists of an orientated cuboid model with a constant 

velocity, see Figure 3. This model is very simple, which assures 

fast processing and converging filtering, but is limited against 

manoeuvring objects. 

 

 

 
 
Figure 3.  Object model used, including reference, width, length 

and heading angle. On the right, possible references 

of an object (L=left, F=front, R=right, B=back, 

C=centre). 

 

In order to catch observability changes and object manoeuvres, 

as well as to reduce the influence of noise, outliers and split and 

merge effects in the observations, further mechanisms have 

been developed, which are only briefly introduced in this paper 

and will be extensively presented in future publications. These 

include the multi-hypotheses association, the variable object 

reference (Figure 3), the partial observability matrix (with 

corresponding filter adaptations), and strategies to duplicate and 

unify object hypotheses. In order to achieve a homogeneous 

representation, all objects are considered to be aligned to the 

ego-vehicle (width as lateral dimension, length as longitudinal 

dimension). Thus, their width and length might be exchanged 

after analyzing the object movement (in the object fusion). 

 

The advantage of using a logical reference of the object is that 

complex 3-dimensional objects are represented by a point, and 

thus the tracking and fusion mechanisms stay computationally 

less time-consuming. In order to compare two objects (as in the 

data association), the reference of an object can be changed to 

any other reference, as long as the corresponding sides are 

observable. In this process the accuracy of the position must 

also be adapted by means of propagation of uncertainty. 

 

 

4. IMAGE PROCESSING FOR OBJECT DETECTION 

The first of the methods presented in this paper consists of the 

extraction of object observations from camera images. The 

proposed method is based on the extraction of the image 

texture, the segmentation of the image in regions with the same 

texture value and the analysis of the structure of the segmented 

image. In order to reduce computation costs and the detection of 

noise objects, this method is only applied on the region of the 

image within the driving corridor (see Section 3). 

 

Texture features are extracted in different ways in the 

bibliography: e.g. by means of statistical features (cooccurrence 

matrix), model based features, geometric features and others. 

Most of the methods are suboptimal under variable lighting 

conditions and in perspective images. In this work, the mean 

gray value in the neighbourhood is taken for every pixel as 

texture feature, which allows fast computation and shows good 

results. Due to the varying lighting conditions and traffic 

situations, the texture calculation must be done adaptively, as 

shown in Figure 4. Therefor the image region directly in front 

of the vehicle is assumed to belong to the road and used as 

reference to set the gray value step and offset (defining thus the 

asphalt colour). 

 

 

 

 
 
Figure 4.  Adaptive calculation of the texture image (reference 

area marked in white). 

 

In a further step, the structure of the texture image is calculated 

in the form of a segment graph. Each segment with a uniform 

texture value is set as a node and all its neighbours are 

calculated and saved as connexions in the graph. This expensive 

algorithm has been optimized, for example by means of the 

driving corridor. See an example in Figure 5. 

 

 

 
Figure 5.  Example of a simplified segment graph to represent 

the structure of the texture image. 

 

By means of the segment graph and the corresponding gray 

texture values, an analysis is proposed in order to classify each 

segment. Possible image segment classes are road, object, lane 

marker, and spot. A rule set is applied iteratively in order to 

exclude unfeasible classes for each texture segment. The rules 

are based on the typical structure of a driving situation, as for 

example: A texture segment can only be of type object if it is in 

contact with a lighter road segment; A segment can only be of 

type road marker if it is in contact with a darker road segment; 

and so on. Whenever a texture segment only has one possible 

class, this class is assigned to it. In order to initialize the 

analysis, the segment corresponding to the texture reference 

region (see Figure 4) is set as road. 
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After image segment classification, those segments classified as 

objects are used to generate object observations based on the 

model presented in Figure 3. Since split and merge effects can 

appear at the obtained object segments, only nearly horizontal 

sections of the segment’s lower boundary are extracted (xi1, yi1, 

xi2, yi2). Thus, all objects are assumed to be observed from their 

closest side to the sensor (reference=B, heading=0°). In future 

works, this extraction will be extended in order to consider 

object lateral sides and object heading. 

 

Under the assumption of a flat road, the observations are 

transformed from image into road coordinates by means of an 

inverse resection. 

 

 

 
i

r

ir pTp   (1) 

 

 

The matrix r

iT  represents the transformation between image 

and road coordinates. It consists of the inverse of i

rT , which 

corresponds to the well-known collinearity equations i

wT  (from 

world to image coordinates) simplified with the z-component as 

follows: 
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This equation is adapted to a road point 
rp , where 

wr xx  , 

wr yy   and constant wr zz  (e.g. 0rz ). The obtained 

matrix corresponds to i

rT : 
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In a final step, the obtained object observations are refined and 

validated via edge information, as can be seen in Figure 6. To 

do this, an object standard height is assumed and with it, a 

window is calculated in image coordinates (analogously to 

Equation (3)). If the amount of edges contained in the window 

reaches a threshold, the object is validated. Edges in direction to 

the vanishing point are discarded of this step, since they are 

often present in road structures (without objects).  

 

Accompanying to the generation of object observations, the 

uncertainty in image coordinates, derived from edge 

information, is transformed into road coordinates by means of 

propagation of uncertainty and equation (1). 

 

 
 

Figure 6. Examples of validated (above) and not validated 

object observations (below). 

 

 

5. LASER SCANNER PROCESSING FOR OBJECT 

DETECTION 

As a second cue of object observations a new method to process 

laser scanner reflection points is presented in this section. For 

the object segmentation, the in-sensor pre-processing is used. 

As a pre-filtering, only objects within the detected driving 

corridor are processed (see Section 3). The focus of this section 

is set on the fitting of the segmented reflection points (contours) 

to the object model presented in Figure 3. As indicator of the 

basic shape of an object, the contour point with minimal angle 

to the contour extreme points is selected. Further calculations 

are done in order to characterize the detected object with its 

dimensions, heading, reference and observability. 

 

 

 
 
Figure 7.  Decision of the basic shape of a contour depending on 

the minimal inner angle, 
min . 

 

The basic shape of an object is identified depending on the 

minimal angle between both contour extreme points (
E1p  and 

E2p ) and an inner contour point (
Cp ), 

},,min{min E2CE1 ppp , as represented in Figure 7. If this 

angle is close to 180°, then the object has an oblong shape (I-

shape). If no clear minimum is present and all angles are close 

to 90°, it is a round (or slightly rounded) object (U-shape). If 

the minimum angle is larger than 180°, then a concave object is 

given (∩-shape). If a clear minimum close to 90° is found, then 

the object has L-shape. In other cases, other shapes shall be 

considered. 

 

In real data, the vertex in L-shaped objects is often not detected. 

Therefore, it is convenient to take the two contour points with 

minimal inner angle and to estimate the vertex point as the 

intersection point between the lines 
C1E1 pp ,  and 

C2E2 pp ,  

(see Figure 7.f). 

 



 

 

 

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 

Commission V Symposium, Newcastle upon Tyne, UK. 2010 

 

135 

After having decided the basic shape of the object, its heading 

and size are calculated as shown in Figure 8. The size of an L-

shaped object depends on the inner angle of its vertex. If it is 

less than 90° (Method 1), then the longest side is taken as the 

first dimension, and the distance from this side to the other 

extreme point is taken as the second one (see Figure 8.d). If the 

angle is greater than 90°, this would result in a too short 

estimation (Figure 8.c). In this case (Method 2), the vertex is 

first shifted on the longest side to the closest point to the other 

extreme (see Figure 8.e). 

 

 

 
 

Figure 8.  Calculation of the object size. 

 

The calculated raw heading and size are then adapted to the 

model of Figure 3. To do this, a check of the basic shape, 

heading and position of the object is applied, and its width, 

length, heading and optimal reference point are calculated. 

 

The presented method, as in most methods of the bibliography, 

is not able to deal with every contour unambiguously (see 

example in Figure 9). For this reason, the most probable object 

observations are generated and passed to the tracking and fusion 

module, where the ambiguity is solved with help of the object’s 

movement. 

 

 

 
 
Figure 9.  Presence of ambiguities in the object characterization 

from laser scanner data. 

 

In a last step of this method, the observability of the detected 

object is analyzed and saved in the observability matrix. A 

component (length or width) is set to not observable in any of 

the following cases, which are represented in Figure 10: 

 

- The contour extreme is close to the sensor range limit 

(Figure 10.a). 

- The contour extreme is possibly beyond another object 

(Figure 10.d). 

- Assuming that the object has double length (or width), the 

coverage angle from the sensor nearly does not change 

(Examples: not observable Figure 10.b, and e, but 

observable Figure 10.c). 

 

 

 
 
Figure 10.  Different observability constellations of detected 

laser scanner objects (see cross-references in text). 

 

Based on the accuracy of each reflection point provided by the 

sensor and on the extracted object properties, the object 

accuracy is calculated by means of propagation of uncertainty. 

An example of laser scanner observations over a sequence of 

real data is shown in Figure 11. 

 

 

 
 
Figure 11.  Example of laser scanner detections in a sequence of 

real driving data. 

 

 

6. EXPERIMENTAL RESULTS 

A set of experiments has been carried out in order to test and 

check the plausibility of the presented methods. On the one 

hand, the simulator environment of the Institute of 

Transportation Systems of the DLR (see www.dlr.de/ts) has 

been applied, which includes realistic traffic and sensor 

simulation (camera, laser scanner and others). In the simulator, 

traffic situations can be targeted and repeated in controlled 

conditions. In addition to the simulated experiments, real 

driving data collected with the ViewCar (see Figure 1) has also 

been used to check the plausibility of the methods. In both 

cases, the information about the driving corridor is assumed to 

be provided. This reduces the processing time and the false 

positive rate (due to noise in the road sides). 

 

The experiments conducted include different highway scenarios 

of interest, such as vehicle following, overtaking and lane 

changing. Table 1 contains a summarized overview of the 

results. As a first criterion, the position accuracy is considered 

x  and 
y . In simulated drives, the mean absolute error 

(compared with the known ground truth) is given. In real drives 

the ground truth is unknown and therefore, the estimated error 

covariance from tracking is considered instead. Both measures 

have the same order of magnitude. As a second criterion, the 

detection’s reliability (false negative and false positive rates*) is 

taken into account. The false positive rate in real driving data is 

very high due to the inclusion of side objects. 

 

                                                                 
* f.n. = #f.n./#t.p. ;    f.p. = #f.p./#t.p. 
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 Camera  

(24 fps, range ~60 m) 

Laser scanner  

(12.5 Hz, range ~150 m) 

Sim (64 s) Real (46 s) Sim (64 s) Real (46 s) 

x
 (m) 1.309 1.110 0.069 0.293 

y
 (m) 0.298 0.317 0.034 0.197 

f.n.(%) 8.207 8.867 2.990 7.564 

f.p.(%) 6.307 12.988 2.518 24.492 

 
Table 1.  Quantitative results in simulated and real driving 

situations. (see cross-references in text). 

 

Based on Table 1, the following conclusions can be drawn. On 

the one hand, it is proven that both sensors are capable of 

detecting object observations with high accuracy and reliability. 

Thus, the sensors are appropriate to be used as cues for the 

object level fusion. On the other hand, the sensors used 

complement each another well. The laser scanner shows a 

higher accuracy, reliability and range, while the camera has a 

higher frame rate. Finally, since the results on simulated data 

and real data were similar, a validation of the results with 

simulated data is possible. Although no ground truth was 

available, a visual comparison shows qualitatively good results. 

 

 

7. CONCLUSIONS AND OUTLOOK 

In this paper an object detection system based on two cues has 

been presented. The methods have been introduced in the 

context of a multi-layer multi-sensor fusion system. The object 

fusion has been carried out at object level, for which object 

observations were extracted from each sensor. 

 

The extraction of object observations from camera images has 

been done applying texture calculation and image structure 

extraction. Compared to other works in the bibliography, the 

method has the advantage of detecting objects even though 

these might not have clear edges, features or movement. The 

important thing is that the object has a different texture (or gray 

value) than its background. However the method still has some 

limitations, as in roads containing different asphalt regions, 

spots or dirt (e.g. fallen leaves). As in other works, shadows 

from other objects and bridges can also lead to wrong results. 

 

In the second part of the paper a method to characterize objects 

detected by a laser scanner has been presented. With the 

proposed method, based on the inner angle of the contour 

points, a more detailed object shape characterization (including 

round and concave objects) than with conventional methods is 

reached. Additionally, observability checks are explicitly 

performed on the objects. A common limitation of the method 

as in other works is the presence of ambiguities, which have to 

be solved at the fusion level. 

 

The results of the conducted experiments show the plausibility 

of the system. The detected object observations are appropriate 

to be used as the input of an object fusion system. Both sensors 

present strengths and weaknesses, which is ideal for a fusion 

system. All experiments have been run in offline mode without 

real time constraints. However, a set of code optimizations is 

planned for future work, with which we expect the system to 

provide high data rates.  

 

In the future, the limitations of both object cues will be 

improved and the fusion mechanisms will be further optimized. 

The image processing will be extended to other object 

perspectives. The complete system will be adapted and tested 

with other scenarios such as oncoming traffic and urban 

situations. Based on the detected objects the danger recognition 

methods will be further improved and evaluated. 
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