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ABSTRACT: 

 

This paper presents a novel optical indoor positioning system that is currently under development at the Institute of Geodesy and 

Photogrammetry at the ETH Zurich. The aim of the project is to develop an automatic, inexpensive method capable of providing 

continuous sub-mm positions in real-time from a mobile device in all indoor environments. The system architecture does not require 

cost-intensive high-precision mechanics or sophisticated set-ups. The main purpose of the system called CLIPS (Camera and Laser 

based Indoor Positioning System) is the precise pose determination of a mobile camera. The difference to the photogrammetric 

relative camera orientation is that it is based on the principle of an inverse camera, where one camera is substituted for a device that 

emits laser-beams from a virtual central point. The laser beams project bright spots on any surface in an indoor environment. These 

laser spots are seen by a camera for the determination of its relative orientation with respect to the laser-device. First experiments 

have shown that the relative orientation of the camera could be correctly determined in all cases and that the new system has the 

potential to achieve mm-level accuracy or better. However, the overall system performance has been limited so far due to an 

imprecise determination of the system-scale. 

 

 

1. INTRODUCTION 

A diverse range of indoor positioning technologies is already on 

the market or currently under development. Techniques that 

have the potential to achieve cm-level accuracy or better include 

the use of Ultra-Wideband (UWB), WLAN, Ultrasound, RFID, 

high sensitive GNSS, pseudolites and many more. However, 

one single system cannot satisfy all user requirements due to 

poor signal propagation or restrictions in the line of sight. In 

particular, some systems require sophisticated set-ups or fix 

installations and therefore do not fulfil the users’ requirements 

of flexibility and mobility. On the other hand, systems that 

operate without additional infrastructure, i.e. signal strength 

based methods, cannot achieve sub-decimetre accuracy and do 

not reach the level of reliability that the user needs. Our novel 

optical system CLIPS (Camera and Laser based Indoor 

Positioning System) proposed for the first time in Mautz (2009) 

aims to overcome these drawbacks. 

 

2. ARCHITECTURE OF CLIPS 

The central idea of the new indoor positioning system is based 

on the fundamentals of stereo photogrammetry, where the 

position and the rotation of a camera relative to another camera 

are derived. Instead of using two cameras, the principle of an 

inverse camera is used by replacing one camera with a device 

that we call “laser-hedgehog”. This device projects well-

distributed laser spots as flexible reference points on the ceiling, 

walls and furnishings in any indoor environment. The 

projecting light source consists of several focused laser-beams 

that originate from a static, well-defined central point. The 3D 

directions of the laser-beams are also precisely known through a 

one-time high precision calibration. By projecting the laser-

beams on a virtual (i.e. mathematical) plane, we are able to 

simulate the image of a virtual camera. The main functions of 

the laser-hedgehog can be summarised as: 

 

1. Projection of flexible reference points on any surface. 

2. Simulation of a second camera. 

3. Allowing for the use of a computational cheap point 

detection algorithm. 

 

The advantages of that approach are threefold. Firstly, the 

system is not depending on an existing field of reference points. 

The laser-hedgehog simply creates its own reference field. As a 

consequence, CLIPS has a high degree of mobility that is 

quickly and immediately applicable in any indoor environment. 

Secondly, the computational costs can be reduced since there is 

only one camera image that has to be processed. Through a one-

time calibration of the laser-hedgehog, the orientation of each 

laser beam is already known within 0.05° in its horizontal and 

vertical angle. As all laser beams have a common origin, we can 

use stereographic projection to map the directions of the lasers 

on a virtual image. Thus, we spare the steps of point detection 

and identification for the virtual picture. Thirdly, the detection 

of corresponding point pairs is facilitated with the laser spots 

due to their distinct colour, shape and brightness compared to 

feature detection algorithms that rely on natural image features.  

 

During the measurement phase the digital camera observes the 

reference field, which is in our case projected by the laser-

hedgehog. Having carried out the point detection and 

identification for the individual laser beams in the camera 

image, the relative orientation (detailed in Chapter 3) can be 

computed by introducing the coplanarity constraints of epipolar 

geometry.  

 

Another problem is the introduction of a system-scale which 

cannot be determined by relative orientation. Out of several 



 

 

 

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 

Commission V Symposium, Newcastle upon Tyne, UK. 2010 

 

576 

options for the introduction of the system scale, the simplest 

option was chosen by directly measuring the distance between 

the laser hedgehog and the camera using another instrument. 

These distance measurements were carried out only for the first 

couple camera positions. Then, the 3D vectors between the laser 

hedgehog and the camera positions were computed. In addition, 

the spatial coordinates of the laser points were determined by 

intersection. Once the 3D positions of the laser spots are 

known, the relative orientation parameters for further camera 

positions can be determined by simple spatial resection.  

 

 

3. RELATIVE CAMERA ORIENTATION 

When determining the geometric relationship between the laser 

hedgehog and the CLIPS camera the presence of known 3D 

reference points as well as the provision of prior approximate 

values for the relative camera orientation cannot be assumed. 

This poses a challenging problem for the determination of the 

unknown orientation parameters. Therefore, the requirement for 

an algorithm is to be capable to correctly, uniquely and robustly 

determine the relative orientation even in absence of an 

approximate guess of the initial camera pose. In addition, the to-

be-used algorithm should perform well with a minimum number 

of pairs of corresponding points and should not have any 

restrictions to the geometry of the projected laser points. These 

requirements are the criteria for assessing the relative 

orientation algorithm that is best qualified for CLIPS. 

 

 

Non-iterative Methods 

 5-Point 

(Stewénius) 

6-Point 

(Stewénius) 

8-Point 

geometry used epipolar geometry 

number of point-corres-

pondences 
5 6 8 

inner camera orientation 

needs to be known 
yes no yes 

control points required no no no 

least squares adjustment no no no 

initial approximate guess 

required 
no no no 

number of solutions  1-10 1-15 1 

 

Table 1. Non-iterative methods for the determination of the 

relative camera orientation 

 

The 5-Point and the 6-Point Algorithms have two important 

advantages: a) they do not require approximate values for the 

relative orientation and b) they perform well even if the point-

correspondences are entirely on a critical surface such as a 

plane. As a drawback both algorithms do not deliver unique 

solutions, but instead a couple of possible solutions where the 

correct solution needs to be identified. The 8-Point Algorithm is 

a linear method that does not require an approximate solution 

and yields a unique solution, but fails in case that all point-

correspondences are located on the same plane. 

 

Iterative methods require the provision of initial approximate 

solutions for the unknown relative orientation parameters that 

get refined by an iterative least-squares adjustment. If these 

series of iteratively refined solutions converges, a unique 

solution will be the outcome.  

 

 

 

Iterative Methods 

 exploitation of the 

coplanarity constraint 

spatial 

resection 

geometry used epipolar geometry collinearity 

number of point-corres-

pondences 
5 3 

inner camera orientation 

needs to be known 
yes yes 

control points required no yes 

least squares adjustment yes yes 

initial approximate guess 

required 
yes yes 

number of solutions  1 1 

 

Table 2. Iterative methods for the determination of the relative 

camera orientation 

 

The comparison between the requirements stated above and the 

properties given in Table 1 and 2 shows, that none of the 

algorithms can fulfil all criteria.  Since the inner orientation, i.e. 

the intrinsic camera parameters, can assumed to be known for 

the CLIPS camera, the 6-Point Algorithm is not adequate. Also 

the 8-point algorithm is not a feasible algorithm for CLIPS, 

because it cannot be applied if all points are located on a plane, 

which is likely to be the case if all laser-points are projected to 

the ceiling. For this reason, the chosen method for the relative 

orientation consists of a catenation of the three remaining 

algorithms: the 5-Point Algorithm provides the initial 

approximations that are optimised by an iterative least-squares 

minimisation based on the coplanarity and collinearity 

constraints. As the 5-Point Algorithm provides up to 10 

solutions for every camera position, the algorithm has been 

embedded into a RANSAC algorithm. As a result, the correct 

essential matrix is identified. Then, the correct solution is 

decomposed into a translational vector b and a rotational matrix 

R and finally adjusted by a least-squares estimation of all 

relative orientation parameters. This approach is illustrated in 

Figure 1. 

 

 

Camera imageVirtual image

Relative orientation using the 5-Point-

Solver and RANSAC

Approximated parameters 

of the relative orientation

Refinement of the RO parameters using 

least squares adjustment

Adjusted parameters of 

the relative orientation
 

 

Figure 1. Method for the estimation of the relative camera 

orientation 

 

3.1.1 5-Point Algorithm of Stewénius 

 

The 5-Point Algorithm that we use is based on Stewénius 

(2005). The use of this algorithm requires a previous inner 

camera orientation that can be obtained by a one-time camera 

calibration. Note that the 5-Point Algorithm developed by 

Stewénius does not estimate the camera pose that is normally 

expressed in form of the base vector b and the orientation 
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angles (roll, pitch und yaw). The algorithm yields the essential 

matrix 

 

 

 '''T RBRE  ,   (1) 

 

 

that generally describes the relative orientation (R', R'', B) of 

two cameras with respect to each other, where R' is the rotation 

matrix of the inverse camera and R'' the rotation matrix of the 

real camera. The base matrix 
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is skew-symmetric and contains the components of the base 

vector b = (bx, by, bz)
T between the projection centres of the two 

cameras. Under the assumption that the inverse camera (in our 

case the laser-hedgehog) has already been set-up in the target 

coordinate system, the rotation matrix R' is equal to the identity 

matrix I. Thus the equation for the essential matrix  

 

 

 ''RBE      (3) 

 

 

is simply the product of the base matrix B and the rotation 

matrix R'' of the digital camera. In order to compute the 

essential matrix E the coplanarity constraint 

 

 

 0'''T xEx     (4) 

 

is applied. The coplanarity condition exploits the fact that the 

projection centre of the camera O', the projection centre of the 

inverse camera O'' and each laser point are on the same plane, 

called the epipolar plane. The coordinates x' and x'' denote the 

image coordinates of the inverse camera and the digital camera. 

Alternatively, the coplanarity constraint can be written as a 

scalar triple product 

 

 

 .0''')''(' TT  rBrrbr   (5) 

 

 

The image projection vectors in the object coordinate system 

 

 

 ''''' xxIxRr   and '''''' xRr    (6) 

 

 

of a world point L correspond to the translated and rotated 

image vectors x' and x'' that appeared in (4).  

 

 

 

 
Figure 2. Epipolar geometry 

 

In order to compute the essential matrix E, the coplanarity 

constraint (4) is modified to 
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where 
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contains as many lines as there are point correspondences 

(Hartley et al. 2003). Vector e contains all 9 elements of the 

essential matrix E. A singular value decomposition (SVD) is 

performed on the A-matrix by analysing 

 

 

 .
T

AUSV      (9) 

 

 

The four column vectors of matrix V that have the smallest 

singular values are decomposed into the matrices E1, E2, E3 and 

E4. Thus, the essential matrix E can be expressed as a linear 

combination in the form of 

 

 

 
4321

wEzEyExEE  ,  (10) 

 

 

where x, y, z and w are scalars. Since these four variables can be 

determined apart from one unknown scale factor, w is set to 1. 

Using the way Stewénius (2005) has chosen to solve the 

equation system, the two additional constraints 
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  (11) 

 

 

are introduced. The expansion of the essential matrix E 

according to (10) in (11), results in a polynomial system of 10 

equations of degree 3. This set of equations can be solved with 

Image Virtual  Image 

Laser spot 

O’’ O’ 

r’’ r’ 
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the Gröbner bases where a 10 x 10 matrix is set up. The 

eigenvectors of that matrix contain the solutions for the 

unknowns x, y and z of (10). This way, all possible essential 

matrices can be expressed. A detailed description of the 

algorithm can be found in Stewénius (2005). 

 

The advantage of that approach is that theoretically only five 

corresponding pairs of object points need to be identified in 

order to estimate matrix E and obtain a solution for the relative 

orientation. A critical geometric configuration occurs if all 

object points are elements of a straight line. In addition, 

Kalantari (2009) pointed out that the 5-Point Algorithm by 

Stéwenius is not robust for the case of sideways motion. The 

algorithm is useful for the CLIPS project, because it performs 

well even if all corresponding points are on the same plane.  

 

3.1.2 Combination of the 5-Point Algorithm with MSAC 

 

The drawback of the 5-Point Algorithm is that the result can 

consist of up to ten solutions in form of different E-matrices. In 

order to identify the correct matrix in real time, an MSAC (M-

Estimator SAmple Consensus) Algorithm according to Torr et 

al. (2000) has been implemented. In order to decide whether a 

point pair is an outlier or inlier, the cost function 
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is set up, where the weight function reads 
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In contrast to the RANSAC algorithm, not only outliers (wi ≥ T) 

contribute to the cost function C, but also the inliers (wi < T).   

The weight of each outlier is equal to a pre-defined threshold T. 

Inliers also contribute to the function costs with an 

inconsistency value w that is determined by 
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An individual threshold T is determined for every essential 

matrix E separately. 

 

Prior to the MSAC test, geometric impossible essential matrices 

E are eliminated by a plausibility check on the geometry. 

Obviously, if the object points that have been determined by 

spatial intersection between the vectors ri' and ri'' are located 

behind the laser-hedgehog, the solution on hand can be rejected.  

The essential matrix that is most likely the correct solution 

according to the MSAC test, will be further considered. In order 

to carry out the MSAC test, each essential matrix is 

decomposed in rotation matrix R'' and base matrix B according 

to Hartley et al. (2003). First, a singular value decomposition is 

performed on the essential matrix E by 
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Introducing the matrices  
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the base matrix and rotation matrix can be determined by 
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As mentioned in Hartley et al. (2004) four different camera 

poses can be derived from each essential matrix E. This 

ambiguity problem arises from the fact that the essential 

matrices are only unique up to an undefined algebraic sign that 

induces two solutions for the base and the rotation matrix 

respectively. However, with the application of the previously 

mentioned geometric check, the three false solutions can be 

identified. The geometric check is based on a spatial 

intersection according to Tilch (2010). Hereby, the two 

normalized vectors  
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are determined and with the help of the matrices 
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the design matrix 
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can be set up, where matrix I  is a 3 × 3 identity matrix. The 

observation vectors 
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are here written as a product of the origin of the position vectors 

and the matrices Ai' respectively Ai''. The coordinate origin (0, 0, 

0)T was chosen to be the initial point for the position vectors of 

all laser rays ri' and b to be the initial point for ri'' accordingly. 

Both observation vectors can be assembled as a common 

observation vector 
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The 3D position vector of the laser points Xi can be determined 

by a least-squares adjustment 
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apart from an unknown system scale factor. For the application 

of the geometric check, this procedure is repeated for every 

combination of possible base vectors b and rotation matrices R.  

 

3.1.3 Refinement of the Camera Pose by Least-Squares 

Minimisation 

 

For the final determination of the relative orientation 

parameters, an iterative least-squares adjustment is carried out. 

Such an adjustment requires good approximate initial values for 

base vector b and the rotation matrix R, which can be taken 

from the outcome of the MSAC Algorithm. Note that such a 

procedure requires the explicit determination of the rotation 

angles  
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where the components of the rotation matrix read 
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The observation equations are derived from the coplanarity 

constraint (5) and conveniently rewritten as determinants 
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analogous to Luhmann (2003). The entries of the first column in 

(26) are obtained by a division of the original constraints with 

the base vector component bx and the substitution 
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The position vector  
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denotes the direction vectors x'' after the camera coordinate 

system has been rotated into the direction of reference 

coordinate system analogous to (6) using the rotation matrix R''. 

From the observation equations (26) we obtain one nonlinear 

constraint for each point correspondence. In order to apply the 

iterative Gauss-Newton optimisation these constraints need to 

be linearised. Therefore the nonlinear observation equations 

(26) are transformed into the linear model 
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where each addend denotes the partial derivative of (26) in 

respect to one of the unknown orientation parameters by
*, bz

*, ω, 

φ and κ. For each available point correspondence one 

observational equation (29) is obtained. Therefore at least five 

point correspondences are necessary in order to solve for all 

five unknown parameters. The coefficients of (29) are the 

entries of a design matrix A that is used for the Gauss-Newton 

least-squares adjustment. Accordingly, the normal equations 

read 
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The vector dx in (30) contains an additive correction for the 

approximate values of the orientation unknowns that are taken 

from the outcome of the previous iteration step.  If the entries in 

dx do not contribute to a significant improvement anymore, the 

iteration is stopped. As a result of this refinement we obtain the 

adjusted unknown relative orientation parameters, i.e. the 3D 

translation vector and the rotation angles between the digital 

camera and the laser-hedgehog. Along with a probe attached to 

the camera, the translation vector can be used for coordinate 

measurements on industrial objects.  

 

 

4. ASSESSMENT OF THE PROTOTYPE 

The accuracy assessment of the current system can only be 

regarded as provisional because the projection centre of the 



 

 

 

International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 

Commission V Symposium, Newcastle upon Tyne, UK. 2010 

 

580 

camera used was neither made available by the manufacturer 

nor straightforwardly determinable. As a workaround, the 

accuracy of the 3D-coordinates of the laser points has been 

assessed. Based on the recording of the laser points from 

various camera locations and determination of the camera 

orientation for each location as described in Chapter 3, the 3D-

cordinates of the laser point centres could be determined by 

spatial intersection. In order to obtain an independent and 

redundant set of laser point coordinates, a totalstation survey 

has been carried out.  The comparison was carried out by 

assessing the residuals of an affine transformation between both 

3D-point clouds. Hereby, the standard deviation σ0 and the scale 

factor m of the affine transformation have been considered as 

the main evaluation criteria. The 1-sigma standard deviation 

was σ0 = 0.6 mm and the scale factor m = 0.9981 that would 

cause deviations of 2 mm/m. Our explanation for the relative 

large difference from the expected scale factor of m = 1 is that 

the exact location of the camera projection centre was unknown. 

In order to assess the precision (i.e. the repeatability under 

unchanged conditions) of our measurement system we have 

taken images at five different camera positions, each with 20 

camera shots. The average 1-σ standard deviation of a single 

measurement was σx = 0.08 mm, σy = 0.08 mm and σz = 0.18 

mm. We ascribe the larger variance in the height component to 

the geometry of the laser points that were all projected on the 

ceiling of our laboratory. 

 

5. CONCLUSIONS AND OUTLOOK 

The relative orientation of the CLIPS camera could be 

successfully achieved with an implementation of the 5-Point 

Algorithm of Stewénius (2005). Through a subsequent least-

squares adjustment the pose estimation could be further refined. 

First tests have proved that the pose estimation of the camera is 

reproducible. Due to missing knowledge of the camera 

projection centre, a throughout system assessment was not 

possible. Nevertheless, the tests show that CLIPS has the 

potential to achieve a positioning accuracy in the magnitude of 

millimetres or better. 

 

If the number of laser points could be increased, the 5-Point 

Algorithm would perform more stable in respect to 

measurement noise and outliers. Along with the increase in the 

number of laser points the next steps in the system development 

include the improvement of the laser point detection algorithm 

and an enhanced identification method. Furthermore, a proper 

and practicable solution for the determination of the system 

scale must be found. 
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