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ABSTRACT: 

We present development of automated algorithm for mapping global urban area in high resolution using ASTER satellite images and 

coarse-resolution urban area maps. The algorithm consists of two steps: classifying pixels of ASTER satellite images into urban or 

non-urban by Learning with Global and Local Consistency (LLGC) technique; and integration with existing urban area maps using 

logistic regression. We implemented the algorithm and demonstrated it against 340 scenes of ASTER satellite images. LLGC 

trimmed up 500-m-resolution clusters of urban area into 15-m-resoluton clusters. However accuracy assessment on LLGC result 

showed 75% user’s accuracy, 41% producer’s accuracy, 94% overall accuracy and 0.50 kappa coefficient, indicating LLGC had 

considerable misclassifications due to similarity in surface reflectance among non-vegetative land cover. To complement the 

misclassifications, we integrated LLGC result with existing urban area maps. Accuracy assessment on result of the integration 

showed 74% user’s accuracy, 43% producer’s accuracy, 94% overall accuracy and 0.51 kappa coefficient, indicating that the results 

were more accurate than LLGC result and existing urban area maps. We concluded our method would improve global urban area 

map not only in terms of spatial resolution, but also in that of accuracy. 

1. INTRODUCTION  

Urbanization has been a main concern for regional and global 

environmental change (Foley et al., 2005) and socio-economic 

problems (Angel et al., 2005). Various kinds of studies (e.g. 

Balk et al., 2005; Scholes and Biggs, 2005; Montgomery, 2008; 

Sutton et al., 2009), have used satellite-derived global urban 

area maps to evaluate critical aspects of urbanization for global 

environmental change, such as  size, scale and form of cities 

and conversion of land cover (Laumann, 2005). The studies 

using global urban area map had provided valuable information 

of urbanization especially for less documented regions. As the 

studies on urbanization progressed, however, 1-km spatial 

resolution of global urban area map have gotten obsolete for 

measuring spatial structure of urban area in fine scale (Angel et 

al., 2005) and for modelling land use conversion with socio-

economical variables (Nelson and Robertson, 2007). 

To measure spatial structure of urban area in fine scale, urban 

areas in region of interest have to be mapped using high-

resolution satellite images (e.g. Landsat, Terra/ASTER, 

IKONOS and Quickbird). However, classification of urban area 

from high-resolution satellite images is much time- and labour-

consuming, which prevents not only effective investigation in 

urbanization but also comprehensive comparison over regions 

and countries. Thus we believe that developing and providing 

high-resolution global urban area map would promote deeper 

understanding of urbanization. 

In this paper, we present automatic algorithm for developing 

global urban area map from high-resolution satellite images 

using Learning with Local and Global Consistency (LLGC) 

technique and integration with existing urban area maps using 

logistic regression. Regarding definition of urban, we 

introduced definition discussed by Potere and Schneider 

(2007) ; they defined urban with presence of built-up area. 

2. METHOD 

We constructed the method with two steps: first, we classified 

urban area from high-resolution satellite images using Learning 

with Local and Global consistency (LLGC) technique; second, 

to correct misclassification of LLGC, we integrated the urban 

area map of LLGC with existing urban area map of coarse 

resolution. The procedure in each step is described below; 

overview of the method is showed in Figure 1. 

2.1 Classifying Urban Area from ASTER/VNIR Satellite 

Images using LLGC 

To achieve automatic classification of urban area from satellite 

images, two basic components of classification, clustering and 

labelling, have to be automated. For automated clustering, 

unsupervised clustering method (e.g. ISODATA) is commonly 

employed for land cover classification (e.g. Koeln et al., 2000; 

Angel et al., 2005); for labelling, however, visually interpreting 

clusters into land cover classes is needed because clusters does 

not have any information of land cover class. 

For automated labelling, we employed urban area map of coarse 

resolution as training data. Successfully classified urban area 

map would be a good training data for clustered satellite 

images; however the gap of spatial resolution makes 

inconsistency among pixel values and labels. For example, if a 

cluster likely to be urban and another cluster likely to be non-

urban are covered within an urban pixel of coarse resolution, 

each cluster includes training data of urban even though they 

should be separated into urban and non-urban. 

To deal with the gap of spatial resolution, we introduced 

Learning with Local and Global Consistency (LLGC). LLGC 

constructs a function to correct roughly labelled classification 

into smoothly labelled result (Zhou et al., 2003). The method 

was thus suitable for our case, in which clusters derived from 
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high-resolution satellite images were initially labelled with 

coarse-resolution urban area map. 

The output of LLGC has not only classification result, but also 

confidence value ranged from 0 to 1. The confidence value was 

rather appropriate to represent gradual transition of land cover 

between urban and rural area. In order to reflect the transition to 

output, we introduced the confidence value into integration 

mentioned below. 

We employed surface reflectance images derived from Visible 

and Near-Infrared Radiometer of Advanced Spaceborne 

Thermal Emission and Reflection radiometer (ASTER/VNIR), 

which have been commonly used for monitoring urban 

environment. 15-m spatial resolution of ASTER/VNIR is much 

finer than existing global urban area map, thus urban area map 

derived from ASTER/VNIR would allow measuring complex 

spatial structure of urban area. Moreover, ASTER/VNIR has 

been operated since December in 1999 to complete cloud-free 

global coverage (Yamaguchi et al., 1998); therefore we 

supposed that ASTER/VNIR was the most suitable source for 

high-resolution global urban area map. 

2.2 Integrating with Existing Urban Area Map using 

Logistic Regression 

Although the clusters were successfully classified by LLGC, the 

result would include misclassifications due to similarity in 

surface reflectance among different land covers. For example, 

urban area surrounded with sand area could be classified as 

non-urban because surface reflectance of urban is similar to 

sand area. Also, cloud cover would considerably lead to 

misclassification. These disturbances stem from heterogeneities 

of landscape and image quality among ASTER/VNIR scenes, 

suggesting the results would have uncertainty by scene. 

To reduce the uncertainties among scenes, we integrated the 

result of LLGC with existing urban area maps by introducing 

logistic regression. Logistic regression has an advantage in 

representing presence of urban in form of probability, which 

could represent spatial gradual transition between urban and 

rural area. 

We also considered geographical heterogeneity in accuracy of 

existing urban area maps. Schneider et al. (2003) had suggested 

that accuracy of satellite-based estimation of urban area at 

urban centre is higher than at rural area. We expected that 

distance from boundary of urban area (DBU) would work as 

proxy of the heterogeneity. We calculated DBU from urban 

class cluster of MODIS/Terra Land Cover Type 96-Day L3 

Global 1km ISIN Grid V004 (MOD12) and GRUMP Urban 

Extent Grid  (GRUMP). 

Terrain is also significant factor for presence of urban (Clarke et 

al., 1997). Therefore we included slope calculated from digital 

terrain model (DEM) derived from ASTER/VNIR into the 

logistic regression. 

We constructed a model to estimate probability of presence of 

urban as equation (1). 
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where Pi(urban) is the probability of presence of urban at ith 

pixel and Ui is defined in form of polynomial expression as 

equation (2). 
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where � is coefficient for each variable, LLGCi is confidence 

value of LLGC at ith pixel, SLOPEi is slope at ith pixel, 

DBUMOD12,i and DBUGRUMP,i is DBU at ith pixel in MOD12, 

GRUMP, respectively (positive value for outside urban area; 

negative value for inside urban area). 

3. EXPERIMENT AND RESULT 

3.1 Sampling ASTER/VNIR Scenes and Ground Truth 

Data 

For experiment, we sampled ASTER/VNIR images by 

following group: 

Group A: randomly selected scenes under stratification in terms 

of number of cities by climatic zone (7 scenes for tropical; 13 

for dry; 55 for temperate; 24 for cold). 

Group B: scenes intersecting with urban area of cities of more 

than one million (241 scenes). 
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Figure 1. Overview for mapping urban area in high resolution 
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On each scene of Group A, approximately 500 point 

coordinates were sampled at lattice grid; whereas, on the scenes 

of Group B, 799 point coordinates were sampled from 

GRUMP/Settlement Point database and 83 point coordinates 

were sampled from Degree Confluence Project database (Iwao 

et al., 2006). We acquired ground truth data by visually 

interpreting presence of urban at each point coordinates using 

false colour composites of ASTER/VNIR image based on 

colour tone and texture. 

3.2 Classifying Urban Area from ASTER/VNIR using 

LLGC 

Before applying LLGC, we conducted clustering analysis on the 

images using ISODATA method in which initial number of 

clusters was 100 and tolerant convergence was 2%. 

We applied LLGC method to the clustered images using 

MODIS Terra + Aqua Land Cover Type Yearly L3 Global 500 

m SIN Grid  (MCD12Q1) as initial label of urban area. The 

result represented spatial structure of urban area, such as sparse 

greenness in urban area and gradual transition in building 

density between urban and rural area, in much finer resolution 

than MCD12Q1 (Column (a) and (b) in Figure 2). However, we 

found that no urban area was classified in some scenes even 

though urban area was visually recognizable (Column (b) for 

Karach and Kiev in Figure 2). 

Accuracy assessment on the result of LLGC showed 75% user’s 

accuracy, 41% producer’s accuracy, 94% overall accuracy, and 

0.50 kappa coefficient (Table 2). 

3.3 Estimating Probability of Presence of Urban using 

Logistic Regression 

We assigned confidence value of LLGC, slope, DBU of 

MOD12 and GRUMP (negative value for inside urban area; 

positive value for outside urban area) to ground truth data, and 

estimated logistic model for probability of presence of urban by 

climatic zone  (Table 1). Signs of coefficients were 

corresponded to our assumption and statistically significant at 

95% level, except coefficient of slope for tropical zone and dry 

zone. 

Variable Tropical Dry Temperate Cold 

-2.440  -2.753  -2.364  -2.383 
Intercept 

(< 0.001) (< 0.001) (< 0.001) (< 0.001) 

6.995  9.383 5.126 5.134  Real-valued classification 

with LLGC (< 0.001) (< 0.001) (< 0.001) (< 0.001) 

0.007  -0.036  -0.042  -0.044  
Slope 

(0.5393) (0.0979) (< 0.001) (< 0.001) 

-23.960 -11.527  -17.020  -6.430  Distance from boundary 

of MOD12  (< 0.001) (< 0.001) (< 0.001) (< 0.001) 

-4.722 -6.097 -3.623 0.742  Distance from boundary 

of GRUMP (0.024) (< 0.001) (< 0.001) (< 0.001) 

Table 1. Coefficients and p-values of logistic regression by climatic zone. Number in each row indicates coefficient for the vari-

able; number in brackets indicates p-values. 

Climatic 

zone 

User's 

accuracy 

Producer's 

accuracy 

Overall 

accuracy 

Kappa 

coefficient 

Global 75% 41% 94% 0.50  

Tropical 83% 27% 95% 0.39  

Dry NaN 0% 97% NaN 

Temperate 78% 37% 94% 0.48  

LLGC 

Cold 63% 46% 93% 0.50  

Global 59% 61% 93% 0.56  

Tropical 67% 52% 96% 0.57  

Dry 29% 23% 96% 0.23  

Temperate 55% 62% 93% 0.54  

MOD12 

Cold 62% 57% 93% 0.56  

Global 29% 85% 81% 0.36  

Tropical 31% 88% 87% 0.40  

Dry 10% 65% 82% 0.13  

Temperate 26% 86% 79% 0.32  

GRUMP 

Cold 29% 79% 82% 0.35  

Global 74% 49% 94% 0.56  

Tropical 82% 49% 96% 0.59  

Dry 100% 1% 97% 0.09  

Temperate 76% 46% 94% 0.54  

Estimated 

urban area 

with 

logistic 

regression Cold 67% 46% 94% 0.51  

Table 2. Result of accuracy assessments on LLGC, MOD12, GRUMP and estimated urban area with logistic regression globally 

and by climatic zone. In result of LLGC in dry zone, no pixel at validation point data was classified as urban.
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We calculated probability of presence of urban for each pixel 

and classified the pixels into urban or non-urban: Pixels of 

more than 0.5 probability were classified as urban; pixels of less 

than or equal to 0.5 probability was classified as non-urban 

(Column (c) in Figure 2). We assessed accuracy of the 

classification, showing 74 user’s accuracy, 49% producer’s 

accuracy, 94% overall accuracy, and 0.56% kappa coefficient; 

whereas the accuracies of MOD12 were 59% user’s accuracy, 

61% producer’s accuracy, 91% overall accuracy and 0.56 kappa 

coefficient; the accuracies of GRUMP were 29% user’s 

accuracy, 85% producer’s accuracy, 81% overall accuracy, 0.36 

kappa coefficient (Table 2). Higher overall accuracies and 

kappa coefficients of the results of logistic regression than those 

of the others indicate improvement in accuracy owing to the 

integration. 

4. DISCUSSION 

4.1 Evaluation of LLGC Classification 

Higher user’s accuracy of LLGC than producer’s accuracy of 

that indicates that LLGC failed to detect much part of actual 

urban area (Table 2). The main causes of the failures would be 

so similar surface reflectance among urban and the other non-

Figure 2: Examples of estimated urban area of MCD12Q1, result of LLGC, and result of logistic regression. Square in image rep-

resent extent of close-up image.
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vegetated land cover, and thus much urban area was classified 

as non-urban. 

Despite of the misclassifications of LLGC, complex spatial 

structure of urban area, which was filled with a few pixels in 

coarse-resolution urban area maps, was very finely represented 

(Figure 2). Extent of urban area cluster of LLGC was similar to 

that of MCD12, indicating that LLGC finely trimmed up the 

clusters of MCD12. It suggests that coarse-resolution urban 

area map could be improved by LLGC in terms of spatial 

resolution with keeping original geographical extent of urban 

area cluster. 

4.2 Implication on Coefficients of the Logistic Regression 

Difference in degree of the coefficients among climatic zones 

reflects features of source data. For example, coefficients of 

DBU of MOD12 for tropical and temperate zone were more 

significant than that for dry and cold zone. It indicates that, for 

tropical and temperate zone, estimated urban area in MOD12 

was more closely associated to actual urban area than for dry 

and cold zone. The explanation could be supported by the 

accuracy assessment, in which kappa coefficients of MOD12 

for tropical zone were higher than that for dry and cold zone. 

4.3 Improvement with the Integration 

The urban area map classified with the integration was more 

accurate than the result of LLGC, MOD12 and GRUMP in 

terms of overall accuracy and kappa coefficient (Table 1). Thus 

we might conclude that the integration improved the accuracy 

of urban area maps as a whole. Moreover, the integrated map 

might inherited the features of output of LLGC; that is, user’s 

accuracies of the integrated map (67-100%) were close to that 

of LLGC (63-83%). 

We visually found significant improvements in the result of 

Karach and Kiev, in which LLGC could not detect some extent 

of actual urban area, but the integration had done (Column (b) 

and (c) for Karach and Kiev). The accuracy assessment reflects 

the improvement, showing higher overall accuracy and kappa 

coefficient of result of the integration than that of LLGC. If 

LLGC had failed to detect urban area, the integration would 

strongly depended on MOD12 and GRUMP; however effect of 

confidence value of LLGC were remained in the result, shaping 

complex spatial structure of urban area in 15-m resolution. 

5. CONCLUSION 

We presented the method for automatic development of urban 

area map in high resolution using LLGC technique and by 

integration with existing urban area maps using logistic 

regression. We implemented the method, and demonstrated it 

on 340 scenes of ASTER/VNIR as high resolution image, 

MCD12, MOD12 and GRUMP as existing urban area maps. 

The result showed LLGC worked effectively to trim up 500m-

resolution clusters of urban area into 15m-resolution clusters. 

The result also showed the integration using logistic regression 

improved accuracy of urban area maps better than LLGC-

derived urban area map and existing urban area maps. 

The proposed method will be practically useful for improving 

accuracy and spatial resolution of global urban area maps. The 

high-resolution global urban area map developed with the 

method will encourage providing deeper insights on 

urbanization not only for developed countries but also for 

developing countries through regional and international 

comparisons. 
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