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ABSTRACT:
 
Velocity estimation using tracer conservation or heat flow equation based on infrared image sequence is one of the most challenging 
inverse problems in geosciences and remote sensing applications. In this paper, a new nonlinear model has been created for 
estimating top surface velocity from an infrared image sequence. The differential form of tracer conservation or heat flow equation 
is replaced by a temporal integral form of the heat flow conservative constraint equation in which the initial and final states of flow 
terms are associated with only two time-varying frames at time t1 and t2. Iterative equations with Gauss-Newton and Levenberg-
Marguardt algorithms for the estimation of the top surface velocity are formulated based on the temporal integral form of the heat 
flow equation, modelling the velocity field, and a nonlinear least-squares model. The solution of a numerical model is used as a 
benchmark to exam the new estimator. Both angular and magnitude error measurements based on the synthetic surface heat flow 
from the numerical model demonstrate that the performance of the new approach with the nonlinear model are much better than the 
results of using a linear model of the tracer conservation or heat flow equation. One sequence of NOAA AVHRR images taken in 
the New York Bight fields is also used to demonstrate the performance of the nonlinear inverse model. 
 

1. INTRODUCTION

Estimation of surface velocity from an infrared image sequence 
is one of the most challenging inverse problems in studies of 
ocean circulations. Scientists have used a number of techniques 
to solve the inverse problems, but two procedures have 
achieved prominence over the last few decades.  The first is the 
Maximum Cross Correlation (MCC) algorithm (cf. Leese and 
Novak, 1971; Emery et al. 1986), which is a feature-tracking 
technique that is used extensively by oceanographers to process 
satellite data for surface velocities. Another technique is the 
inversion of the heat or optical flow equation for the velocity 
vector (cf. Horn and Shunck 1981; Kelly 1989; Kelly and Strub 
1992; Ostrovskii and Piterbarg 1995, 2000; Vigan et al. 2000; 
Zavialov et al. 1998; Cote and Tatnall 2007).   
 
Marcello et al. (2008) performed evaluation and detailed studies 
of popular motion estimation techniques in computer vision 
field applying to tracking oceanographic thermal structures. 
Their works indicate that Luscas-Kanade (1981), (1984) is the 
only differential approach tested that provided a reasonable 
error performance in tracking geography flow motion, whereas 
Black-Anandan (1996) achieved only angular accuracy. 
 
An alternate strategy is proposed by Chen et al., (2008) to solve 
the inverse problem by representing heat flow with bilinear 
polynomials over the distance of several pixels (a sub-image). 
They estimated top surface velocities with the heat flow 
conservation equation. The velocity is chosen as an optimal fit 
to the heat flow equation, and is thus globally valid over the 
image domain. Simultaneous solutions for this field and the 
velocity yield a Global Optimal Solution (1st-order GOS). A 
higher order GOS in which the velocity field is expanded by 
surface B-Splines Function to solve the optical or heat flow 
equation is also developed by Chen (2010). 
 

In remote sensing applications that attempt to estimate the 
surface velocity from thermal satellite-born image sequences, 
the time difference between two images is usually in the order 
of several hours (Chen et al., 2008, 2010), and the displacement 
of motion is usually somewhere between zero and several 
pixels. The heat flow equation in the GOS algorithms is a 
differential form of the conservative heat flow constraint (first-
order Taylor expansion) and holds only for an infinitesimal 
motion. Using the differential form of the heat equation for 
large scale displacement field estimation may create errors in 
real-world applications. To improve the performance of the 
velocity estimation from an infrared image sequence, we utilize 
a temporal integral form of the conservative heat flow equation 
to replace the differential form and create a nonlinear system in 
this paper for the top surface velocity estimation.  
 

This paper is organized as follows: In section 2, a set of system 
equations with the inverse model are derived. Section 3 
introduces algorithms that are applied to the design for this 
velocity estimator. Section 4 deals with the validation of the 
nonlinear inverse model by deriving velocity from synthetic 
tracer motion within a numerical ocean model. Next, we 
investigate the robustness of the velocity retrievals with detailed 
statistical comparisons between the current fields obtained by 
the proposed estimator and numerical ocean model.  We apply 
the nonlinear inverse model to one AVHRR image pair from 
the North Atlantic Ocean. Finally, conclusions are drawn in the 
last section. 

2. A NONLINEAR MODEL 

2.1 Heat Flow Equation 

The heat flow of an image sequence is a set of vector fields, 
relating each image to the next. Each vector field represents the 
apparent displacement of each pixel from image to image. If the 
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evolution of the heat field in a two-dimensional surface of 
ocean is conserved, the conserved heat flow must be governed 
by the following equation (Horn-Shunck 1981; Kelly 1989)  

ST
tdt

dT
����

�
�

� )( v , (1) 

where T = T(x, y, t) is the temperature of the heat flow with 
regard to the x, and y coordinates, and time t. The heat flow 
vector is defined by v(x, y, t) = (u, v). The variable S = S(x, y) is 
a group term of source, noise, and diffusion containing the 
effects of air-sea interaction and turbulent processes within the 
mixed-layer (see, e.g., Kelly 1989, and Chen et al., 2008). 
Equation (1) is called the heat flow or tracer conservation 
equation. 
 
Integrating equation (1) from time t1 to t2, we have a Temporal 
Integral form of the Heat Flow Constraint equation (TIHFC) 
 

0),(),,(),,( 12 �������� yxstyxTtyyxxTTIHFC , (2) 

where x and y are fixed position coordinates at time t = t1, �x 
and �y are two components of the displacement field, and the 
temporal integral of group of the source, noise, and diffusion 
terms is denoted by 
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For a special case, if the group term of the source, noise, and 
diffusion are negligible, equation (2) becomes the displacement 
frame difference equation (Robbins and Netravali, 1983) as 
follows 
 

),,(),,( 12 tyxTttvytuxTDFD ������ . (3) 
 

There are three in (2) or two in (3) unknown variables in an 
image sequence, so the problem is under-determined, and extra 
constraints must be imposed in order to arrive at a solution.  
 
2.2 Expansion of Velocity Field 

In order to solve the inverse problem for the optical or heat flow 
fields using equation (1) based on time varying frames, we 
utilize an efficient approach in which we expand the velocity 
field as bilinear polynomial functions or two-dimensional B-
Splines functions (Chen et al., 2008, 2010). To reduce the 
computational complexity, we utilize the bilinear polynomial 
functions to present the velocity field in this topic. 

 
Any two-dimensional function can be expressed by bilinear 
polynomial 
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where fij = f (i, j), preset parameters nx and ny are the number of 
interpolation points on x and y directions as shown in Figure 1, 
and quantized indices p and q on nodes are functions of x and y 
and are given by 
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where � �  denotes an integer operator. The function Ha,b (x, y)
is defined by 
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The two components velocity field and the source term on 
image scene can be expressed by the following discretional 
forms of the bilinear polynomial functions with first order 
continuity that holds for all Nx � Ny image globally 
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All velocity and source term off nodes (blue color points shown 
in Fig. 1) can be calculated by equation (5) using the velocity 
and source term on node points that are expressed as upq, vpq and 
spq. The TIHFC equation in (2) becomes 
 

ijijijijij stTttvjtuiTTIHFC ������� )(),,( 12
, (6) 

 
where TIHFCij is an error of the temporal integral form of the 
heat flow constraint equation. Now, the equation (3) is no 
longer local, and all unknown velocities on nodes are connected 
with each other in whole image scene shown in Figure 1. 
 

 
 

Figure 1.  Bilinear square pixel sub-arrays (nx = 3 and ny = 3) 
with 9 node points in which yellow (p, q) and red (k, l) node 
pixels are unknown velocities that are mapped onto an image 
scene. 
 
The preset parameter n = nx = ny is the degree of over-constraint 
of the system. When n � 2, the system is over-constrained for 
all unknown velocity field upq, vpq, and the group term spq. We 
will solve this over-constrained system with a global optimal 
approach in next section.  
 
2.3 A Nonlinear Least-Squares Model 

Considering the existence of quantization errors and noise 
during the intensity measurements, the TIHFC equation in (6) is 
never equal to zero. According to least-squares principle, a chi-
squares that is a sum of the total errors in (6) is given by 
 


�
ji

ijTIHFC
,

22� , 

 
where i and j go over all pixels in Nx � Ny image 
( ]1,0[]1,0[ ����� yx NjNi ). Minimizing the chi-squares 
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function for the given indices k and l for all node points in an 
image, we have 
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where the symbol �ij is the Kronecker-Delta symbol, we can 
prove 
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where the summation denoted in above equations are given by 
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The regions that the summations 
go over pixel points (within the 
red color frame) and some 
unknown velocities and sources 
that are mapped onto this image 
with indices (p, q) and (k, l) are 
shown in Fig. 1. 
  
Using the optimization conditions and equations (7), a set of 
over-determined system of equations for the estimation of the 
surface velocity is given by  
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when the parameters n � 2. The three independent equations in 
(8) on node points can be degraded back to a single optical or 
heat flow equation (1) when n is equal to unity. 
 
All velocities upq, vpq, and spq on node points can be obtained by 
solving the nonlinear system equations in (8), and the velocities 
uij, vij, and sij off node points can be calculated by the 
interpolation functions in (5). The summations in (8) cover only 
the unknown velocities ukl, vkl, and skl and their surrounding 
nearest neighbor node points as shown in figure 1. The 
equations in (8) is a nonlinear system of equations, they can be 
solved by Gauss-Newton and Levenberg-Marguardt algorithms. 
 

2.4 Solving a Nonlinear System of Equations 

The velocities ukl and vkl and their surrounded nearest neighbor 
velocities are implicitly contained in the summations in 
equation (8) and (6). Using Gauss-Newton algorithms, we can 
expand equations (6) in Taylor series to first order 
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where m is the iteration index. Employing the above equation 
and combining (6) and (8), we find a compact form of iterative 
equations as follows 
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where ' ( 0 is a Levenberg-Marguardt factor that is adjusted at 
each iteration to guarantee that the matrix A is positive definite. 
A smaller value of the factor ' can be used, bringing the 
algorithm closer to the Gauss-Newton method with second 
order converging. This Levenberg-Marguardt method can 
improve converge properties greatly in practice and has become 
the standard of nonlinear least-squares routines.  
 
The iteration equation (9) derived based on a more general form 
of TIHFC equation (2) contains a grouped terms. For most 
cases, if the grouped term in (2) is negligible (for well 
calibrated data), then a simplified form of the iterative equation 
with the DFD equation is given by 
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Figure 2.  Velocity fields: (a) and (b) Average of the actual 
vector fields generated by the model at time t1 = 18 hr and t2 = 
20 hr. (b) Estimated vector fields obtained by the new nonlinear 
inverse model from an image sequence between t1 and t2. 
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The local TIHFC equation (2) or DFD equation (3) is converted 
into a set of global simultaneous system equations in (8) by the 
bilinear expansion approach and the nonlinear least-squares 
principle, and they become local iterative equations in (9) or 
(10) again by the Gauss-Newton and Levenberg-Marguardt 
algorithms. All velocities on nodes can be solved by the 
iteration procedures based on the equation (9) or (10) that 
depends on image data type and calibrations. 
  
The degree of the over-constraint parameter n can be adjusted 
to get from high to low resolutions of the structures for the 
velocity field. The effects of noise can be restrained efficiently 
by a higher degree of the over-determined equations in the 
nonlinear inverse model. 
 

3. EXPERIMENTS 

To assess the ability of the present method, we use the solution 
of a numerical model as a benchmark, and introduce a surface 
tracer field as an initial condition (see Chen et al., 2008). 
Angular and magnitude measures of error are introduced in this 
section, and the mean values of these errors are applied to 
evaluate the performance of the velocity estimations. 
 
3.1 Error Measurement 

Angular and magnitude measures of error are used in this paper 
(Chen 2010). Velocity may be written as v = (u, v, 0) (assuming 
the component of velocity in z is w = 0), and then the angular 
and magnitude errors between the correct velocity vc and an 
estimate ve are 

)arccos(
ec

ec

vv
vv �

��) ,      (11) 

and  

ec

ecV
vv
vv 2�

�� ,    (12) 

where magnitude errors are dimension-less quantity. The mean 
values of the angular and magnitude errors between the correct 
velocity vc and an estimate ve are used to evaluate the 
performance of the velocity estimations. 
 
3.2 The Numerical Model 

In order to demonstrate the performance of this new nonlinear 
inverse model for surface velocity estimation, a simulated flow 
field and its advection of sea surface temperature are obtained 
by solving 3D nonlinear fluid dynamical equations and the 
equation for the temperature.  For the test, the temperature T is 
treated simply as a passive tracer with a weak diffusivity added 
for numerical stability (see Chen et al. 2008).   
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Figure 3. Plots of error measurement generated by the linear 
and nonlinear inverse models with numerical model data at time 
t1 = 18 hr and t2 = 20 hr: (a) Mean values of angular error 
defined by the equation (11) vs. n (a degree of over-constraint), 
and (b) mean values of magnitude error defined by the equation 
(12) vs. n. 
 
The inversion of the simulated SST for surface flow is 
performed using the nonlinear model for a range of node points.  
The number of pixels between two node points is defined by n – 
1 as shown in Fig. 1. In terms of the number of node points, the 
smallest array size tested has the dimension of 2 � n � 14 points 
on each side (see Fig. 3). In the calculations reported here for 
the numerical model data, only the heat flow without grouped 
terms in equation (10) is used.  
 
The benchmark velocity vectors given by the numerical model 
are shown in Figure 2a. For comparison, vectors estimated by 
the nonlinear inverse model are shown in Figure 2b. The degree 
of over-constraint parameter n is assigned by two (n = 2).  The 
false color presentation of images (96 � 96) in the background 
are the tracer fields (or simulated SST) with scales ranging from 
0 to 50 (km) in horizontal and vertical, which by the time from 
18 hr to 20 hr, has been deformed by the currents and is 
significantly different from its original sin(2*x / L)sin(2*y / L) 
square cell shape. 

 
The above comparisons between Fig. 2 (a) and (b) have been 
qualitative.  Quantitative measures of how well the nonlinear 
inverse model can reproduce the simulation flow are seen in 
Fig. 3 in which the mean values of angular and magnitude error 
versus n (n = nx = ny) are shown. The two curves shown in Fig. 
3 (a) and (b) demonstrate performance of both the linear inverse 
model (see Chen et al. 2008) and current nonlinear inverse 
model with the same velocity modelling and the global optimal 
strategies. 
 
Both curves of angular and magnitude errors generated by the 
linear inverse model (see Chen et al. 2008) as shown in Fig. 3a 
and b (curves in red) exhibit a local minimum in the vicinity of 
n � 9, and two competing phenomena, one at small n and 
another for large n, are responsible for this. However, both 

curves of angular and magnitude errors generated by the 
nonlinear inverse model shown in Fig. 3a and b (curves in 
green) decrease versus n until n = 2 continually. Values of both 
the angular and magnitude errors approach minimal points 
when the degree of over-constraint parameter n is equal to two 
as shown in Fig. 3. Both curves of angular and magnitude errors 
by the two methods clearly indicate that the current proposed 
estimator has much better performance than the linear inverse 
model (Chen et al. 2008) for the full range of n variation and 
particularly for the higher resolution of the velocity structure 
(small n). 
 
3.3 Application to AVHRR Images 

The intended application of the nonlinear inverse model with 
iterative equation in (10) is to obtain accurate estimation of the 
ocean surface velocity from AVHRR image sequences.  We 
derived a velocity field from two NOAA satellite images taken 
in the New York Bight, east of the New Jersey coast and south 
of Long Island, NY.  These data were taken on May 21, 2007 at 
times t1 = 10:46 and t2 = 15:18 UT.  The pixel resolutions for 
the images are 1.008 (km) in the north-south and east-west 
directions.  The temporal separations between images are thus 
�t = 4.32 h. Level 2 sea surface temperature data which have 
been processed to remove sun glint, atmospheric aberrations, 
and geometric anomalies is used for these experiments. We 
calculated velocities from the AVHRR image sequence as 
shown in Fig. 4. 
 

4. CONCLUSION

In this paper, a nonlinear model has been created for estimating 
velocity field under conservative constraint of the heat flow. 
The heat flow equation for surface velocity estimation is 
replaced by the temporal integral form of the heat flow 
constraint in which the initial and final states of motion terms 
are associated with only two time-varying frames at time t1 and 
t2. Gauss-Newton iterative equations with Levenberg-
Marguardt algorithms for motion estimation are derived based 
on the temporal integral form of the heat flow equations, 
modelling the velocity field, and a nonlinear least-squares 
model. 
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The solution of a numerical model is used as a benchmark to 
exam the new estimator. Both angular and magnitude measures 
of error are applied to evaluate the performance of the velocity 
estimations from this numerical model image sequence. The 
new approach with the temporal integral form of the heat flow 
equations exhibits much better performance than the results by 
the same approach and numerical model using the heat flow 
equation. The algorithm performs very well even in the 
presence of the recording noise present in the realistic image 
sequences. 
   

Figure 4. Vector field derived from the AVHRR image 
sequence (false color representation) from 10:46 to 15:18 UT 
on May 25, 2007 within unmasked region. 
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