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Abstract— In this work we address the task of contextual
classification of an airborne LiDAR point cloud. For that purpose,
we integrate a Random Forest classifier into a Conditional
Random Field (CRF) framework. A CRF has been shown to
deliver good results discerning multiple classes. It is a flexible
approach for obtaining a reliable classification even in complex
urban scenes. The incorporation of multi-scale features improves
the results further. Based on the classification results, 2D building
and tree objects are generated and evaluated by the benchmark
of ISPRS WG III/4.

I. INTRODUCTION

The automated classification of airborne LiDAR data is a
challenging task, especially in dense urban areas. In such a
man-made environment different objects usually have certain
relations, which can be utilized as context for the classification
in order to distinguish multiple object classes more reliably.
Conditional Random Fields (CRF) provide a flexible statistical
classification framework which is capable of modeling context
[7]. As a consequence, CRF have become increasingly popular
in computer vision and remote sensing.

However, there is only a small amount of work dealing
with LiDAR point clouds and CRF. Some initial applications
of contextual classification are related to robotics and mobile
laser scanning, dealing with terrestrial LiDAR point clouds.
Anguelov et al. [2] performed a point-wise classification of
terrestrial laser scans using a subclass of Markov Models,
called Associative Markov Networks (AMNs), which encour-
age neighboring points to belong to the same object class.
However, AMNs have a tendency to over-smooth the results.
Thus, small objects often cannot be detected correctly.

Shapovalov et al. [11] investigated the potential of CRFs for
the classification of airborne LiDAR point clouds. They im-
proved the drawbacks of AMN by applying a non-associative
Markov Network, which is able to model typical class relations
such as ’a tree is likely to be above ground’. These interactions
represent additional context knowledge and may improve
classification results. The algorithm consists of two steps.
Firstly, they over-segment the data and secondly a segment-
wise CRF classification is performed. Whereas this aspect
helps to cope with noise and computational complexity, the
result heavily depends on the segmentation, and small objects
with sub-segment size cannot be detected.

The authors of [11] use a Random Forest (RF) [3] classifier
to model the association potential of the CRF. RF are able to

handle a large amount of data and features, and they have
shown good classification results for LiDAR point clouds
[4]. Therefore, we incorporate a RF classifier into our CRF
framework. This relaxes one of the restrictions in our previous
work [9], where we used generalized linear models (GLM)
for the potentials, and thus assumed that the classes can be
separated by linear functions. Moreover, many weights had to
be trained.

In contrast to [11], we do not perform a preliminary
segmentation, but we classify each 3D point in order to enable
the detection of small objects such as cars in the scene. As
we want to utilize contextual information, all interactions are
learned in a training step. For the 3D classification we discern
six classes. Finally, building and tree objects are generated
from the labeled 3D point cloud. We evaluate our approach
on data of the ISPRS test project on urban classification and
3D building reconstruction [12].

II. METHODOLOGY

A. Conditional Random Fields

It is the goal of point cloud classification to assign an
object class label to each 3D point. CRF provide a powerful
probabilistic framework for contextual classification. They
belong to the family of undirected graphical models. The
underlying graph G(n, e) consists of nodes n and edges e.
In our case, each node ni ∈ n corresponds to a 3D point
and we assign class labels yi to all points simultaneously
based on observed data x. The vector y contains the labels
yi for all nodes, and hence has the same number of elements
as n. The graph edges e are used to model the relations
between pairs of adjacent nodes ni and nj , and thus enable
modeling contextual relations. Therefore, each point ni is
linked to its k nearest neighbors (nj ∈ Ni) in 2D by edges. In
contrast to generative Markov Random Fields (MRF), CRF are
discriminative classifiers that model the posterior distribution
P (y|x) directly [7]:

P (y|x) = 1

Z(x)
exp

∑
i∈n

Ai(x, yi) +
∑
i∈n

∑
j∈Ni

Iij(x, yi, yj)

 .

(1)
In (1), Ni is the neighborhood of node ni, corresponding

to the edges linked to this particular node. The two terms in
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the exponent are called the association potential Ai(x, yi) and
the interaction potential Iij(x, yi, yj), respectively; they are
described in the subsequent sections. The partition function
Z(x) acts as normalization constant, turning potentials into
probabilities.

Inference is the task of determining the optimal label config-
uration based on maximizing P (y|x) for given parameters. We
use the message passing algorithm Loopy Belief Propagation
[10]. The result is a probability value per class for each node.
Class labels are assigned based on the MAP method.

B. Association Potential
The association potential Ai(x, yi) links the data to the class

labels and determines the most probable label for a single
node. In contrast to MRF, Ai may potentially depend on the
entire dataset x instead of only the features observed at node
ni. We apply a RF classifier [3] for defining the potential Ai.
In the training step, the number of votes per class in each leaf
of the decision trees is determined and can be used to obtain
a classification posterior for each sample. Ai is modeled to be
proportional to the logarithm of this posterior.

There are some advantages of this classifier compared to
a GLM we used in [9]. Firstly, a feature space mapping was
applied to discern the object clusters by a linear function. This
is not needed any more, because in RF the classes need not to
be linearly separable. Secondly, RF are able to handle many
more features as they automatically select the most important
ones. Hence, a better performance is yielded because only a
subset of features is used, whereas GLM have to train weights
for each feature, a situation which is aggravated by the feature
space mapping. This allows us to utilize multi-scale features.
We adapted some of the LiDAR features proposed in [4]
and used the following features for classification: 1) Intensity
(I); 2) height above an approximated DTM; 3) approximated
plane: sum, mean and standard deviation of residuals, direction
and variance of normal vector; 4) variance of point elevations
in a cylinder and a sphere; 5) ratio of point density in a cylinder
and a sphere; 6) eigenvalue based features: 3 eigenvalues
(λ1,λ2,λ3), omnivariance (O), planarity (P), anisotropy (A),
sphericity (S), eigenentropy (E), scatter (λ1/λ3); 7) variation
of I, O , P, A, S, and point density.

For the features of groups 3-7 the local point distribution is
considered within a sphere, and for groups 4+5 additionally
within a cylinder. We computed all of them for multiple scales
with radii r = 1, 2 and 3 m. This allows overcoming restrictions
of local point features, which improves the classification. 71
features are determined in total for each point and represent
the feature vector hi(x) for node ni.

We balance the data by sampling the same number of points
for each class in training step in order to obtain an unbiased
classification of RF [6]. The RF implementation for Matlab
[1] is used, which considers the Gini-Index of the features for
training the trees.

C. Interaction Potential
The term Iij(x, yi, yj) in (1) represents the interaction

potential and incorporates the contextual relations explicitly

in the classification. It models the dependencies of a node ni
from its adjacent node nj by comparing both node labels and
considering the observed data x. An interaction feature vector
µij(x) is computed for each edge in the graph based on the
element-wise differences of both adjacent node feature vectors,
µij(x) = hi(x)− hj(x). The interaction potential is modeled
as the logarithm of the joint probability of two node labels yi
and yj , log P (yi, yj |µij(x)). Thus, a probability for each label
relation has to be determined using a discriminative classifier.
As for the association potential, we again apply RF for Iij . The
RF classifiers for Ai and Iij are trained separately. In the case
of the interaction potential, each pair of classes is considered
as a single class by the RF, which results in 36 relations for
six object classes. This information modeling the context is
utilized to improve the quality of classification by supporting
more probable class interactions given the data. The degree
of smoothing the labels depends on the feature vector µij(x).
For this reason, small objects are better preserved if there is
sufficient evidence in the data, which is a major advantage in
complex urban areas [8].

D. Object Generation

Since the result of the CRF classification is a labeled 3D
point cloud, we project all points belonging to building and
vegetation, respectively, to a 2D label image defined in object
space in order to obtain binary object masks for both classes.
Morphological opening is carried out to smooth the object
boundaries in a post-processing step.

III. EXPERIMENTS

The performance of our method is evaluated on the LiDAR
dataset of Vaihingen, Germany [5], in the context of the
ISPRS test project on urban classification and 3D building
reconstruction [12]. The point density in the test areas is ap-
proximately 8 points/m2. Multiple echoes and intensities were
recorded. Data acquisition was under leaf-on conditions. Since
we present a supervised classification approach, a training step
is necessary in order to learn the RF. For this purpose, a fully
labeled part of the point cloud with 105655 points is used.

Three test sites were considered for the benchmark. Area
1 is situated in the center of the city of Vaihingen. Dense,
complex buildings and some trees characterize this test site.
Area 2 consists of a few high-rising residential buildings
surrounded by trees. In contrast, Area 3 is a purely residential
area with small, detached houses.

A. 3D Classification

By applying the CRF-classification, a labeled 3D point
cloud is obtained. Six classes, namely natural ground (Nat.),
asphalt (As.), building (Build.), vegetation (Veg.), fence and
car, are discerned for this work. The results are depicted in
Fig. 1. All point labels are inferred simultaneously, so we get
the most probable label configuration. Each point was linked to
its 4 nearest neighbors by edges. The computation performance
mainly depends on the number of trees which is evaluated in
both RF classifiers, and on the depth of the trees f. We used
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Fig. 1. 3D classification result of the three test areas. (gray: asphalt, yellow:
natural ground, green: vegetation, blue: building, red: fence, purple: car)

500 trees and set f corresponding to the square root of the
number of inputs (nf = 71) to 9, as recommended in [1].

One important advantage of RF is the possibility to use
a small subset of data for training, which allows a signifi-
cant speed-up. However, the selected data must be sufficient
to describe the classes in an appropriate way. Considering
the expensive manual effort needed for generating a labeled
reference point cloud for training, this aspect is important
since only smaller subsets with discriminative features and
the requested class relations are necessary. We used 3000
samples per class and per class relation, respectively. Hence
the training data are balanced by sub- and oversampling to
obtain an unbiased classification result.

In our previous approach utilizing a GLM classifier the
weights for both potentials are optimized simultaneously in
the training step [9]. For this reason, one fully labeled point
cloud including all classes and class interactions is needed.
Moreover, many parameters have to be learned, because each
feature in hi(x) and µij(x) is considered in the classification.
For 10 features, six classes and a quadratic feature space
mapping this results in 1890 weights, which have to be
determined. Thus, the amount of the training data must be
sufficient to learn such a large number of parameters.

We compare the RF classification to the GLM approach.
However, due to other class definitions we trained and clas-
sified the test areas again, but used the same parameters as
described in [9]. On a Pentium IV, 16 GB RAM computer
training the RF CRF took only 22.3 min, whereas classification
was faster with 1.8-2.8 min per area. Thus, training takes
significantly less time compared to a linear model classifier.
Here parameter learning based on a the entire training dataset
took 7.5 hours and classification took 6 min per test area. In
summary it can be said, that there are several advantages of
RFs implemented in a CRF.

Fig. 1 shows the results for the three test areas obtained
by the RF CRF classification. Visual inspection indicates
that most objects are detected correctly. Compared to our
previous work [9], especially the tree regions in Area 2 and
3 are much better classified. Due to flat point distributions on
the canopies and low point densities with only few multiple
returns, the canopies of larger trees used to be erroneously
classified as building. Most of these errors are eliminated by

TABLE I
DIFFERENCES [∆%] OF RF AND LINEAR MODELS (AREA 3)

Class Nat. As. Build. Veg. Car Fence
Completeness 3.1 -0.8 9.5 -0.4 38.6 -6.3
Correctness -3.7 2.4 -3.1 9.6 48.4 46.2

TABLE II
EVALUATION RESULTS [%]: COMPLETENESS, CORRECTNESS, QUALITY

Building object object ≥ 50m2 per area
Area A1 / A2 / A3 A1 / A2 / A3 A1 / A2 / A3

Compl. 83.8 / 85.7 / 85.7 100 / 100 / 100 89.9 / 88.2 / 92.5
Corr. 72.7 / 54.5 / 81.7 100 / 100 / 100 90.2 / 95.2 / 94.3
Qual. 63.8 / 50.0 / 71.9 100 / 100 / 100 81.9 / 84.4 / 87.6

Tree object object ≥ 25m2

Area A1 / A2 / A3 A1 / A2 / A3
Compl. 50.5 / 74.1 / 57.4 42.3 / 95.2 / 77.4
Corr. 46.0 / 63.2 / 55.2 64.7 / 78.8 / 83.9
Qual. 31.7 / 51.7 / 39.2 34.4 / 75.8 / 67.4

exploiting multi-scale features. A 3D ground truth is available
only for Area 3. In comparison to the results with GLM
CRF the overall accuracy increases from 81.7 % to 83.7 %,
and the kappa index from 0.76 to 0.79. As demonstrated in
Table I, the results are comparable for both ground classes.
Many confusion errors between vegetation and building are
correct now, which shows much better correctness value for
vegetation (+9.6 %) and completeness for buildings (+9.5 %).
A significant improvement is in particular obtained for the
object classes with fewer points such as car and fence, which
benefit notably from the RF classifier. Here, completeness and
correctness values for car improve by 38.6 % and 48.4 %,
respectively, whereas the correctness of fence increase by
46.2 %. The RF CRF is faster, is able to handle more features,
and yields mostly better results.

B. Evaluation of 2D Objects

2D objects are generated by projecting the points assigned
to building and vegetation, respectively, into a label image with
26 cm pixel size. In order to separate the trees (required for
the benchmark) from low vegetation, which is also included
in the vegetation class, only points with a height above DTM
of more than 1.5 m are considered. Object boundaries are
smoothed by a morphological closing with a 3x3 kernel. The
resulting object masks are evaluated by the benchmark hosts
based on reference data, and the results, shown in Table II and
in Fig. 2, are determined according to [12].

Fig. 2 depicts the evaluation of the classification for build-
ings and trees on a per-area level. Yellow pixels are true
positives (TP), red ones false positives (FP) and blue ones false
negatives (FN). It can be seen that the buildings are detected
reliably. This can also be seen in Table II with quality values
between 81.9 % and 87.6 %. There are just a few FN which are
caused by confusion with vegetation, in particular at building
façades, and dormers. The larger FN and FP areas in Area 1
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Fig. 2. Area-wise results of buildings (upper row) and trees (lower row)
(yellow=TP, red=FP, blue=FN)

TABLE III
DIFFERENCES OF QUALITY [∆%]: RF - LINEAR MODELS

Building Tree
Area A1 A2 A3 A1 A2 A3

per area 2.5 -1.8 -0.7 6.1 -2.2 2.4
per object 0.5 4.2 -3.5 10.8 -1.5 13.5

large objects 12.1 15.4 2.5 -4.9 -9.2 -6.8

are due to the feature ’height above DTM’, which has by far
the most important influence to the classification, as indicated
by the RF. In this complex area the DTM could not describe
the sloped terrain in an appropriate way. However, the per-
object evaluation for buildings larger than 50 m2 reveals that
all objects were detected correctly.

The classification results of trees are a bit less accurate.
Trees are approximated by 2D circles in the reference used
for the evaluation. This would lead to errors in the per-area
analysis [12]. Thus, we focus only on the evaluation of tree
objects, which is more expressive compared to the area-based
evaluation. Area 2 consists of many large trees, which were
detected correctly in most cases. Smaller trees are undetected
e.g. in Area 1. It can be seen that the simple model of selecting
all vegetation points higher than 1.5 m is not sufficient for
obtaining reliable tree objects. An improved tree model might
solve this problem in future.

Table III shows the differences of the quality values obtained
by the proposed approach and our previous work [9]. For
positive values the RF method performed better. Especially
large building objects ≥50 m2 are detected more accurately;
the quality increased by 2.5-15.4 %. The classification of trees
mainly benefits on a per pixel and per object level. In particular
more small trees in Area 1 and 3 are correctly detected with the
new approach, whereas the larger trees are a bit less accurate.

IV. CONCLUSION AND OUTLOOK

We propose a classification method for LiDAR data that
incorporates a Random Forest classifier in a Conditional
Random Field framework. It could be shown that this approach
has many advantages compared to the models previously used.
They are faster and can handle more features. This allows
the use of multi-scale features. The classes can be discerned
more reliably; especially the number of confusions between
building and larger trees is reduced in this way. This approach
outperforms a CRF with linear models and features computed
for only one scale by 2 % considering the overall accuracies
(83.7 % compared to 81.7 %). Especially small objects such as
cars and fences benefit of this classifier. On top of that, fewer
training data are needed.

The evaluation of the 2D objects shows that the buildings
are classified very well, whereas a more sophisticated model
is needed for reliably detecting trees in the points assigned
as vegetation. We will investigate this problem in our future
work.
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