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Project Goals 

The Hessigheim 3D (H3D) benchmark dataset provides an ultra-high resolution, fully annotated 3D dataset 
acquired from a LiDAR system and cameras integrated on the same Unmanned Aerial Vehicle (UAV) 
platform. This results in a unique multi-modal scene description by a LiDAR point cloud H3D(PC) and a 
textured 3D mesh H3D(Mesh), labelled into 11 classes. In addition to tests on semantic segmentation of 
LiDAR point clouds, H3D shall improve the dissemination and acceptance of the mesh representation in 
photogrammetry and remote sensing. So far, meshes are the state-of-the-art representation for small-
scale datasets covering indoor scenes or single objects that are commonly treated by the computer vision 
community. In contrast to unordered point clouds, meshes are graph-based surface structures that 
provide explicit adjacency information. The surface description enables high-resolution texturing while 
efficiently storing geometry.  With the help of H3D(Mesh), we want to foster semantic mesh segmentation 
and evaluate the community’s interest in this kind of representation at the same time. Since data captured 
by the same sensor system is available for three epochs (March 2018, November 2018 and March 2019), 
investigations on multi-temporal semantic segmentation are also feasible. 

Access to the data, including a more detailed description on data collection and labelling as well as the 
possibility to upload results for the participants is feasible by the benchmark webpage 

 https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx 

https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx
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Summary  
 
Automated extraction of geographic objects from airborne data is an important research topic in 
photogrammetry and remote sensing since decades. In addition to images, 3D point clouds from airborne 
LiDAR and Multi-View-Stereo-Image-Matching became more and more important as basic data source. 
The aim of our project is to provide state-of-the-art data sets to the ISPRS community, which can be used 
by interested researchers to test own methods and algorithms on semantic segmentation for geospatial 
applications. We propose a benchmark consisting of highly dense LiDAR point clouds captured at three 
different epochs. The respective point clouds are manually labeled into 11 classes and are used to derive 
labeled textured 3D meshes as an alternative representation.  

Current sensor developments in LiDAR technology provide 3D point clouds at densities which were 
unforeseeable until recently. This development to high-density point clouds is further amplified by the 
increasing availability of UAV-based LiDAR systems. Motivated by these developments, our test data 
consist of a LiDAR point cloud collected from a UAV-platform at a point density of 800 points/m2, which 
potentially allows for applications that were not feasible in the past. Another current direction both in 
hardware and software development is the integrated capture and evaluation of imagery and LiDAR data. 
Thus, in our proposed benchmark the LiDAR point cloud is enriched by RGB colour as derived from the 
mesh texture. The texture is generated by images captured from a camera integrated into the system. In 
addition to the manually labeled point cloud, which provides a “standard” input for our benchmark on 3D 
semantic segmentation, a 3D textured mesh is included as an alternative type of representation. For this 
purpose, the manually labeled classes of the “standard” point cloud are transferred to meshed 
representation (Laupheimer et. al., 2020), i.e. both data sets are labeled to the same scheme. Such 
textured 3D meshes integrate information both from images and point clouds, which is beneficial for 
interpretation purposes. Also due to their advantages for visualisation applications, an increasing number 
of commercial software systems on multi-view-stereo image matching provide that type of representation 
as standard output. Our meshes are generated by SURE 3 from nFrames. Finally, multi-temporal data sets 
provide valuable additional information for semantic analysis in the context of geospatial analysis. While 
this results in the increasing availability of multi-temporal spaceborne and airborne imagery, there is a 
clear lack of multi-temporal LiDAR data available to the public. To close this gap, our benchmark consists 
of data sets collected in March 2018, November 2018, and March 2019 captured over the same area with 
the same sensor configuration.  

Our benchmark data is subdivided into two parts. For one area we will provide reference information, 
while in the second area we will use the reference for the evaluation of participants' results. Participants 
are expected to deliver for each point of the point cloud and/or mesh data in the test area a list of XYZ 
coordinates and a label assigned. This will then be used to evaluate the respective results within the 
project. 
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Full project outline 
 

1. Introduction 
In recent years, machine learning techniques for automated semantic segmentation of 3D data advanced 
rapidly. While novel approaches only relying on few labels are currently pursued (e.g. Lin et.al., 2020) & 
Kölle et. al., 2020), typically, these systems require large pools of annotated data for training and 
evaluating. However, fully labeled data sets are scarce, which is a major obstacle for the application and 
acceptance of such systems. This is why existing data, like the ISPRS 3D Semantic Labeling benchmark of 
Vaihingen/Germany still receives considerable attention, despite the fact that the airborne laser scanning 
data was captured more than 10 years ago. In contrast, our Hessigheim 3D (H3D) benchmark on semantic 
segmentation of high-resolution 3D point clouds and textured meshes from airborne LiDAR and Multi-
View-Stereo-Image-Matching will be based on data generated using most recent software and hardware 
technology. Our benchmark will be unique in that it consists of data covering multiple epochs i.e. multiple 
manually labeled data sets of the same area therefore, and will outperform existing data due to the very 
high point density of 800pts/m2. Furthermore, we transfer the labels of the point cloud to a 3D textured 
mesh representing the same area. Consequently, each epoch of our benchmark consists of two parts:  

- H3D(PC):  a manually labeled point cloud  
- H3D(Mesh):  a semi-automatic labeled textured mesh where labels are transferred  

automatically from the manually labeled point cloud counterpart. 
The following sections will explain the details of both our data set and the proposed workflow for building 
this benchmark set and the corresponding evaluation of results as provided by the participants. 
 

2. Data Set(s) 
 

 
Figure 1: Our area of interest captures the village of Hessigheim in Germany. 
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Imagery and LiDAR data for our proposed benchmark were originally captured in a joint project between 
the University of Stuttgart and the German Federal Institute of Hydrology (BfG) for detecting ground 
subsidence in the domain of sub-mm accuracy. For this monitoring application, the area of interest which 
is the village of Hessigheim, Germany (see Figure 1), was surveyed at multiple epochs in March 2018, 
November 2018, and March 2019. The process of high precision alignment and georeferencing of imagery 
and LiDAR data, which is also mandatory for joint semantic evaluation, is described in (Cramer et. al., 2018) 
and (Haala et. al., 2020). In all three epochs, our sensor setup is constituted of a Riegl VUX-1LR Scanner 
and two oblique-looking Sony Alpha 6000 cameras integrated on a RIEGL Ricopter platform. Considering 
a height above ground of 50 m, we achieved a laser footprint of less than 3 cm and a Ground Sampling 
Distance for the cameras of 1.5-3 cm. Georeferencing of acquired LiDAR strips of this highly dense LiDAR 
point cloud with 800 pts/m2 is accomplished using the OPALS software (Pfeifer et.al., 2014). Both the 
LiDAR data and the imagery were additionally georeferenced by a hybrid adjustment (Haala, et.al., 2020). 
The 3D textured mesh was generated by the SURE software (Rothermel et al., 2012), which integrated the 
LiDAR data to its Multi-View-Stereo image matching pipeline. Both data types are visualized in Figure 2. 
Their inherent properties are discussed in detail in sections 2.1 and 2.2. 
 

  
Figure 2: Subset of our proposed benchmark datasets. The high-resolution LiDAR data H3D(PC) (left; 
coloured according to reflectance) is manually annotated and labels are transferred to the 3D textured 
mesh H3D (Mesh) (right). 

 
2.1 3D Point Cloud. Apart from the XYZ coordinates of each point, LiDAR-inherent features such as the 
echo number, number of echoes, and reflectance 1  were measured. The latter is derived by range 
correction of the raw intensity measurement by RIEGL. The LiDAR point cloud is furthermore colorized by 
transferring colors from the textured mesh. Additionally, we provide a class label for every point (classes 
will be discussed in section 3). As exchange format of data both plain ASCII files and Las files are provided. 
 

                                                           
1 http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextrabytes_implementation_in-
RIEGLSoftware_2017-12-04.pdf 
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2.2 3D Textured Mesh. We generate the 3D mesh by utilizing software SURE from nFrames (Rothermel et 
al., 2012). The geometric reconstruction is based on both LiDAR data and multi-view stereo-image 
matching (using the oblique Sony imagery) to benefit from the complementary information and thus 
achieve better completeness. These oblique images also provide texture for the resulting meshes and thus 
guarantee good texturing of vertical faces, e.g. facades (see Figure 2). Since manual labeling is very 
time-consuming, we opt for semi-automatic labeling of the textured mesh with the manual annotations 
being transferred automatically from the point cloud to the mesh (see section 3.2). The mesh data is 
provided in a tiled manner. Each tile is provided both as plain ASCII file (.txt) and Wavefront OBJ (.obj) file. 
The plain ASCII files provide the centers of gravity (CoGs) for each face along with the transferred label. 
The .obj files are delivered in a textured and labeled fashion.  
 

3. Generating Ground Truth (GT) Data 
 
3.1 Point Cloud Labeling: Manual Annotation. The main focus of our proposal is to provide labeled multi-
temporal and multi-modal data sets for training and evaluation of machine learning systems aiming at 
semantic point cloud segmentation. For point cloud labeling, we established a manual process already 
used by student assistants to annotate parts of the epoch March 2018 as depicted in Figure 3. This 
classification was generated by extracting point cloud segments of unique class affiliation (i.e. the point 
cloud is cut into many small subsets of homogeneous class membership) and segments of each class are 
afterwards merged to form the semantic segmentation by the usage of the CloudCompare software  
(CloudCompare, 2020). We also plan to use this well-established method for annotating the follow-up 
epochs November 2018 and March 2019. Furthermore, in follow-up epochs, we plan to derive labels for 
the complete western shore, i.e. the top area in Figure 1. 
 

 
Figure 3: Already available labels in the epoch March 2018. North points to the right. 
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Figure 4: Detailed view of labels already available for epoch March 2018. 

 
For the March 2018 data set, we manually generated reference labels for differentiating 11 classes (see 
also Figure 3 and Figure 4): 

- Class Catalogue March 2018: 
 

Low vegetation Impervious Surface Vehicle Urban Furniture 
Roof Façade Shrub Tree 
Soil/Gravel, Vertical Surface (i.e. “walls”) Chimney/Antenna  

 
We plan to generate refined reference considering class structure for the following epochs: 
 

- Class Catalogue November 2018 and March 2019: 
 

Ground: Low Vegetation / Grassland (sports ground) 
 Impervious Surface (Street, path in garden, terrace) 
 Soil 
 Gravel  
Building: Roof 
 Roof Furniture (chimneys, antennas,...) 
 Facade 
 Facade Furniture (balcony,...)  
 Solar panels 
Vegetation: Bush/Hedge 
 Tree 
Other Man-Made: Powerline 
 Vehicle 
 Urban Furniture (trash bin, lantern, bench) 
 Vertical Surface (Walls, Lock) 
Other: Clutter (fog/indoor points, humans) 
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Labeling for epoch November 2018 has already started. In total, 10 student assistants are currently 
working on this task or have worked on it in the past. Quality control is accomplished in a two-stage 
procedure. First, student assistants checking each other’s labels and finally, the applicants check the labels 
as last instance. However, we want to stress, that despite a careful quality control, we will not be able to 
completely avoid label noise. 
 
3.2 Mesh Labeling: Automatic Transfer of Point Cloud Labels to the 3D Mesh. Since manual labeling is 
very time-consuming, we opt for semi-automatic labeling of the textured mesh for each epoch. The 
manual point cloud annotations will be transferred automatically by a geometric-driven approach that 
associates the representation entities points and faces (Laupheimer et.al., 2020). Therefore, the mesh 
inherits the class catalogue of the manually labeled point cloud. In comparison to the point cloud 
representation, the mesh is an efficient non-uniform representation requiring only a small number of 
faces to represent flat surfaces. For this reason, the number of faces is significantly smaller than the 
number of LiDAR points. Consequently, several points are commonly linked to the same face. Hence, the 
per-face label is determined by majority vote. However, due to structural discrepancies, some faces 
remain unlabeled because no points can be associated to them (e.g. absence of LiDAR points or geometric 
reconstruction errors). These faces are marked by the class label -1. With the help of the labeled mesh 
data, we want to i) foster semantic mesh segmentation and ii) evaluate the community’s interest in this 
kind of representation at the same time. Our mesh labeling by semi-automatic label transfer from the 
point clouds will also provide insights on the need for manual refinement during potential future 
extensions of the benchmark while limiting the effort for the time being.  
 

  

Figure 5: Automatically labeled mesh. Left: overview, right: close-up for a tile. 

3.3 Evaluation of results from benchmark participants On top of providing annotated 3D data for 
research purposes, we will split the data in each epoch into a distinct training, validation and test area for 
both representations. The splits are congruent in both modalities and in accordance with the mesh tiling. 
Labels for the test set will be kept sealed, because we plan to continue the benchmark evaluation even 
after the funding period. We would like to encourage researchers to participate in this benchmark by 
testing their method on this data set. Precisely, the training and validation labels may be used for training 
their models. If participants intend to take part in the evaluation process, we ask them to submit their 
predicted labels for the test area as simple ASCII file either for H3D(PC) or H3D(mesh) (columns [X, Y, Z, 
classification]). To guarantee a structured exchange, the submission process is managed by the 
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benchmark website, which will be set up and maintained by the Institute for Photogrammetry, University 
of Stuttgart, where the PI and 2 of the co-Is are affiliated. We will then evaluate the performance of the 
participants model by comparing the results to the ground truth labels. For this purpose, we will derive 
the normalized confusion matrix, overall accuracy, F1 scores and mean F1 score, which will be i) returned 
to the participants and ii) made publicly available in the context of benchmark ranking on our website. To 
foster joint evaluation, participants are also asked to provide contact details and information on their 
applied methods i.e. by a short description or link to a recent publication of their approach. This will also 
allow to track trends of methods, establish a sort of “spam-filter”, and will be useful to plan workshops or 
conference sessions at ISPRS events and papers in ISPRS publications based on the respective outcomes. 
We would like to stress that we allow multiple submissions for the same authors only if the approaches 
are different, i.e. repeated submission of results from the same method with differing parametrization 
will be refused. 
 
Expected outcomes  
 
• Fully labeled point clouds captured by airborne LiDAR are scarce, which greatly hampers algorithmic 

development as well as application and acceptance of software systems for their automatic analysis 
due to lacking demonstration of their reliability and resilience. The availability of such data will 
stimulate research and development in the growing field of semantic information extraction for 3D 
geodata, which is a core task within ISPRS. 

• Our scientific initiative is proposed by ISPRS officers representing three different working groups. The 
list of applicants is limited to the respective chairs for organizational reasons, however the proposal 
has been discussed with all officers of these groups. These discussions showed a very strong support 
for the proposal and already demonstrated the significant interest of researchers organised within 
ISPRS for our benchmark. We thus expect the link of researchers to ISPRS to be strengthened by our 
initiative since the benchmark will foster the collaboration under the umbrella of ISPRS. We thus 
expect the benchmark data being used for high quality publications and sessions during future ISPRS 
events. 

• Labeled mesh data, which is provided in addition to the labeled point clouds will help to foster 
semantic segmentation of such data and evaluate the community’s interest in this kind of 
representation at the same time. The promotion of such data is of high interest for ISPRS partners 
from industry, which are currently developing hardware and software systems for the generation of 
such high quality textured meshes from airborne data capture. 

• Point cloud data used for the benchmark were generated by state-of-the-art software and hardware 
systems. Thus, the proposed benchmark provides 3D data at a coverage, density and quality not 
feasible until recently. From our point of view, this will also motivate researchers from neighbouring 
disciplines to use the data and contribute to the benchmark. Thus, the proposed scientific initiative 
will increase the awareness and visibility of ISPRS far beyond the current state. 
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Project Milestones and schedule 

Point cloud labeling by student assistants including quality control will be organized at the Institute for 
Photogrammetry, University of Stuttgart. If the scientific initiative is accepted, we will release data for the 
first epoch (March 2018), where labeling has already been completed, via the first version of the 
benchmark website in January 2021. We will use this data set for testing the IT infrastructure and the 
evaluation process. If problems of any sort occur, we can avoid them in follow-up epochs, thus, feedback 
of participants will be valuable for improving the benchmark. Furthermore, we will also provide a ranking 
of participating methods via the hosted websites. Our general schedule is displayed in Table 1. 

 
Appendix – CVs of the PI and all co-investigators (Co-Is) 

Norbert Haala is Professor at the Institute for Photogrammetry, University of Stuttgart, where he is 
responsible for research and teaching in photogrammetric computer vision and image processing. 
Currently he chairs the ISPRS working group on Point Cloud Generation and is head of EuroSDR 
commission on Modelling and Processing 

Franz Rottensteiner received the Ph.D. degree and venia docendi in photogrammetry from the Vienna 
University of Technology. He became leader of the research group on Photogrammetric Image Analysis at 
the Institute of Photogrammetry and GeoInformation (IPI) at Leibniz Universität in Hannover, Germany, 
in 2008. Since 2014, he has been Associate Professor at IPI, focussing both his research and teaching on 
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Image Analysis and its applications in Photogrammetry. Franz is chair of ISPRS WG II/4 - 3D Scene 
Reconstruction and Analysis 

Jan Dirk Wegner joined the Photogrammetry and Remote Sensing group at ETH in 2012. He is -founder 
and head of the EcoVision Lab (9 PhDs and 3 PostDocs), which does research at the frontier of machine 
learning and computer vision to solve ecological questions. Jan is founder and chair of the ISPRS II/WG 6 
"Large-scale machine learning for geospatial data analysis" and (together with colleagues) organizer and 
chair of the CVPR EarthVision workshops. 

Michael Kölle holds an M.Sc. in Geodesy & Geoinformatics from the University of Stuttgart. As a member 
of the geoinformatics group at the Institute for Photogrammetry, University of Stuttgart, he is currently 
working on his PhD. His main research interests focus on combining paid crowdsourcing and machine 
learning techniques such as Active Learning for generating high-quality training data, especially in the 
context of 3D point clouds. 

Dominik Laupheimer holds an M.Sc. in Geodesy and Geoinformatics from the University of Stuttgart. 
Currently, he is a Ph.D. candidate at the Institute for Photogrammetry, University of Stuttgart. His main 
research interest is the semantic interpretation of 3D urban scenes as acquired by photogrammetric and 
LiDAR sensors. His work focuses on the semantic segmentation of meshes leveraging machine learning 
techniques. 
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