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Abstract 

Efficient determination of overlapping image pairs is very crucial for large scale SfM (Structure 

from Motion) or image orientation. This project, BeBaDOI, addresses this challenge via exploring 

the possibility of learning-based methods. First, a benchmark (BeDOI) with photogrammetric 

referenced overlapping relationship is published, which includes more than 13k images of various 

scenarios. Second, based on several popular backbones and our BeDOI, a supervised fine-tuning 

solution is presented with triplet loss for the generalization on overlapping image pair 

determination. In addition, to further speed up the retrieval, an unsupervised method is introduced 

to build an efficient hierarchical vocabulary three. Finally, this complete solution is successfully 

applied on both large-scale offline SfM and online SfM. In this context, two conference papers 

(GSW 2023 and ECCV workshop 2024) are published, one journal paper is already accepted by 

the PFG-Journal and one journal paper was submitted to the ISPRS Journal P&RS, all the pre-

trained backbone and benchmark are online available. In the future, we hope this project can 

further benefit the community in large-scale SfM, VSLAM, 3D reconstruction.  



Motivations, Objectives and Partnerships  
 

SfM (Structure from Motion) addresses the problem of estimating the image poses and the 

corresponding sparse object 3D points, which is in general identical to the basic goal of image 

orientation (Wang et al., 2019). Over the past decade, SfM has obtained ample achievements, 

especially for large-scale image datasets (Frahm et al., 2010; Wilson and Snavely, 2014; Zhu et 

al., 2018; Schonberger and Frahm, 2016), thanks to some popular open packages (such as, Colmap 

(Schonberger and Frahm, 2016), OpenMVG (Moulon et al., 2016) etc.). However, a challenging 

problem of matching visual overlapping image pairs is posed when dealing with very large image 

datasets, such as crowdsourced images of various landmarks and images collected from social 

media (Flickr, Instagram, etc.), or even images taken by professional photogrammetrists. For the 

crowdsourced datasets, images were taken by various tourists with unidentical cameras in an 

arbitrary manner, which makes the images sorted in an unordered way. In the field of 

photogrammetry, with the knowledge of GPS and IMU, images that are spatially closed can be 

easily determined and image matching is only carried out on these closed pairs. However, GPS 

and IMU cannot be applied everywhere and their corresponding signal is often obstructed by trees 

and buildings in urban areas (Goforth and Lucey, 2019), thus, the common close-range images 

without GPS/IMU taken in an arbitrary way are also unordered.  

 

One intuitive idea to handle unordered images is exhaustive image matching, i.e., matching every 

possible pair. However, it becomes impractical for just several hundreds of images as the 

complexity grows quadratically with the number of images, i.e., N(N-1)/2 image matchings for N 

images (Wang et al., 2019). To accelerate the image matching procedure, various methods for 

designing an efficient indexing structure were proposed, recently, most of the SfM systems adopt 

the Bag-of-Word methods (Sivic and Zisserman, 2003; Nister and Stewemius, 2006) which 

aggregate local features and describe an image via an aggregated global vector. Overlapping image 

pairs are found by comparing the global features. Similarly, Visual vocabulary tree is built to 

search for the nearest neighbors of local features (Havlena and Schindler, 2014). Both BoW and 

VoC take handcrafted local features (SIFT (Lowe, 2004), ORB (Rublee et al., 2011)) as input, 

which can be directly fed into subsequent geometric processing. This might be one of the reasons 

why they are generally favored in SfM pipelines. Despite the popularity of BoW and VoC, due to 

some pre-setting free parameters (e.g., the number of bags and clusters, or the depth of the VoC), 

their retrieval efficiency and accuracy are limited and decrease as the number of images increases.  

 

To guarantee the scalability of retrieval, CNN-based methods that have shown superior 

performance on object image retrieval (Philbin et al., 2007; Philbin et al., 2008; Chen et al., 2021) 

(i.e., to distinguish whether the target image’s content is similar to a cat or a dog) come into the 

notice of determining visual overlapping pairs, Tolias et al. (2016) and Radenovic et al. (2016) 

employed the feature maps of several renowned pre-trained CNN architectures to yield a compact 

global feature, and similar image pairs are identified by investigating the distances of two images 



in the global latent feature space. In this case, the corresponding time efficiency is improved since 

each image is represented by just one global feature vector. In the context of SfM, visual 

overlapping image pair implies that two images observe the same area in 3D object space, but 

some parts of the region may not be identical due to the changes in viewing positions. This in 

principle differs from object image retrieval that identifies semantically similar images, in which 

the corresponding CNN-based methods (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; 

Szegedy et al., 2015) were trained using relevant training datasets (e.g., ImageNet (Deng et al., 

2009)). In addition, exhaustive comparison between global features is yet not the most efficient 

solution. These may result in the CNN-based method not being successfully used in mainstream 

SfM and SLAM solutions (Mur-Artal et al., 2015; Engel et al., 2014). Motivated by the high time 

efficiency and scalability of learning-based methods, it should be advocated to further explore the 

possibility of CNN-based methods in the application of SfM. In this project, three objectives have 

been achieved: 

 

● To cope with scarce benchmarks and the mentioned domain gap, we provide a benchmark with 

geometrically correct references of overlapping image relationships - BeDOI, including 13,667 

images of several different content (such as urban buildings, countryside, forest, etc). It cannot 

only be applied for evaluating performance of relevant overlapping image pairs retrieval 

algorithms, but also cast as training data for learning-based global feature extractors to boost 

the sensitivity for pairwise overlapping information;  

 

● Based on the generated BeDOI, we present a simple yet efficient fine-tuning solution that are 

supposed to extend learning-based backbones’ generality for detecting overlapping image pairs 

with various rotations;  

 

● An efficient indexing solution of hierarchical vocabulary tree is proposed with fine-tuned 

global features, which can further improve the time efficiency of image retrieval.  

 

This project has been completed thanks to the collaboration of researchers from five well-known 

academic institutions and one world-renowned industry company: School of Geodesy and 

Geomatics (Wuhan University, China), Chair of Cartography and Visual Analytics (Technical 

University of Munich, Germany), Microwaves and Radar Institute (German Aerospace Center 

(DLR), Germany), Institute of Photogrammetry and GeoInformation (Leibniz University 

Hannover, Germany), College of Electronic and Information Engineering (Nanjing University of 

Aeronautics and Astronautics, China) and Vexcel Imaging GmbH (Austria).  

 

 

 

 

 

 



Benchmark data collection and generation  
 

In this section, we first give an overview introduction of the benchmark - BeDOI dataset. Then, 

the automatic procedure for generating BeDOI is explained.  

 

Introduction of BeDOI 

In general, BeDOI is composed of 11 high-resolution image datasets, including UAV images 

captured via a nadir camera and oblique photogrammetric images with multiple cameras, as well 

as manually self-collected close-range images with different overlap degrees, which is tailored for 

overlapping image pair identification on photogrammetric image datasets. More specifically, as 

Tab.1 lists, in total, 13,667 images covering various categories of areas are collected, such as urban 

buildings, woodland, countryside, scenic spots, etc. Fig. 1 shows several examples. 

 

Name Image Num. Source Category 

SKFX 60 Close range Historic Relics  

GB 68 UAV Scenic Spot 

GRAZ 250 Oblique Urban City 

YD 374 UAV Scenic Spot 

NH 606 UAV Building  

TZH 1060 UAV Countryside 

SXKQ 1185 UAV Forest 

JYYL 1429 Close range Building 

XHSD 2133 Oblique Urban City 

WHU 2652 UAV University 

SHHY 3850 Oblique Village 

BeDOI 13667 Multi-sources Multi-categories 

Table 1. Information of each dataset in BeDOI. 

 

  

  
(a) Scenic spot (b) Urban area 

  
(c) Cultural relic (d) Forest 

Figure 1. Example images of BeDOI. 

 



Automatic annotation for generating BeDOI 

The overall pipeline to automatically generate BeDOI is illustrated in Fig. 2, in which pre-

processing is for obtaining 3D mesh model and image orientation parameters, and automatic 

annotation is for estimating referenced overlapping relationships: 

 
Figure 2. Flowchart of BeDOI generation. 

 

Pre-Processing. Given a set of collected images, this step is to generate corresponding 

photogrammetric information, i.e., 3D mesh models and image orientation parameters. Following 

the canonical photogrammetric processing, several consecutive procedures are required: feature 

extraction and matching, SfM, stereo dense matching and multi-view fusion, filtering and 3D mesh 

construction (including Delaunay triangulation, texture re-organization etc.). Note that orientation 

information is computed after SfM. This BeDOI processing chain might seem counterintuitive 

since image matching is usually completed before the 3D mesh model is built. However, 

leveraging a 3D mesh model for identifying real overlapping image pairs is not only a viable but 

also highly advantageous solution, as most local features are typically not invariant to large view 

angle change, e.g., oblique images. Such a procedure is beneficial even for state-of-the-art 

learning-based local feature extractors can only slight improve the matching performance (Yi et 

al., 2016). This motivates us to explore 3D mesh models for estimating correct overlapping 

information in a geometrically rigorous manner. One sample mesh model of JYYL is shown in 

Fig. 3. 

 
Figure 3. 3D mesh model of JYYL. 



Automatic Annotation. Based on the collinearity equation, we present an automatic annotation 

method for geometrically correct referenced overlapping image pairs using the generated 3D mesh 

model and image orientation parameters. The basic idea is to reproject every triangle on every 

image. Shared triangles between two images are explored for determining the corresponding 

overlapping degree. The more common reprojected triangles, the larger the corresponding 

overlapping area will be. To estimate accurate triangle reprojection, it is necessary to deal with 

occlusions. Fig. 4 shows that there are many incorrectly identified overlapping areas without 

occlusion detection which can lead to incorrect results in BeDOI. In this work, occlusion is 

detected by the number of triangles that the corresponding ray (from the camera center to the center 

of the target triangle) passes through. No occlusion happens if and only if the number is zero. 

Furthermore, in order to enhance occlusion detection speed, we construct an AABB tree for the 

mesh model. After the occlusion detection, the correct triangle information of the image can be 

obtained. 

 
Image pair                   WoO                              WO 

Figure 4. With occlusion (WO) vs. Without occlusion (WoO). White pixels indicate the 

overlapping area via the proposed triangle reprojections.  

 

After triangle reprojection and occlusion detection, the similar or overlapping degree of image pair 

(i, j) can be computed as follows: 

 

                                                             𝑂𝐼𝑖𝑗 = √
|𝑇𝑅(𝑖)∩𝑇𝑅(𝑗)|𝑛

|𝑇𝑅(𝑖)|𝑛
∙

|𝑇𝑅(𝑖)∩𝑇𝑅(𝑗)|𝑛

|𝑇𝑅(𝑗)|𝑛
                                                    (1) 

 

       where |. |𝑛 returns the number of triangles, TR(i)∩TR(j) represents the set of triangles that 

can be observed in both image i and j. Straightforwardly, the larger the value of 𝑂𝐼𝑖𝑗 is, the more 

similar the image pair (i, j) is. Based on the conventional photogrammetric regularity, image pairs 

i and j can be identified as overlapping if 𝑂𝐼𝑖𝑗 values exceed 0.3. Fig. 5 qualitatively shows the 

determined overlapping region, where the highlighted part in Fig. 5(a) is the overlapping area of 

the two images, Fig. 5(b) is a binary image with the white region corresponding to the highlighted 

area Fig. 5(a). 



 
(a) Determined overlapping region. Highlighted parts are overlapping area 

                                          
(b) Binary results of overlapping region. White regions indicate overlapping area. 

Figure 5. Qualitative results of determined overlapping region. 

     

Ultimately, the overlap or similarity degree among all image pairs can be calculated by equation 

(1). In this paper, we sorted the values of 𝑂𝐼𝑖𝑗 in descending order based on the number of 

overlapping patches. For a binary classification, image pairs with 𝑂𝐼𝑖𝑗values exceeding 0.3 are the 

referenced overlapping ones.  

 

Learning-based baseline method for determining overlapping images 
 

In this section, we provide more details of the proposed method for identifying overlapping image 

pairs and the corresponding offline and online retrieval mode. Four parts are included: 1. General 

overview of the proposed work; 2. Supervised backbone fine-tuning solution; 3. Unsupervised 

indexing structure of hierarchical vocabulary tree; 4) Offline and Online OIP retrieval.  

 

Overview of the proposed baseline method for detecting overlapping images 

Figure 6. Overview of the proposed baseline method for overlapping images. 

 



Fig. 6 illustrates the overall framework of our method, comprising two phases: training and 

application. 

Training Phase: 

    1. We begin with pre-trained backbones and perform supervised fine-tuning using referenced 

overlapping image pairs to ensure the extracted global features are sensitive to overlapping 

information. 

    2. An unsupervised process generates a lookup dictionary of a hierarchical vocabulary tree (Voc) 

tailored to the fine-tuned global features. 

Application Phase: 

    1. Offline Retrieval. All images are processed together. Their global features are extracted, and 

the whole overlapping relationships are determined using the hierarchical vocabulary tree. 

    2. Online Retrieval. This is analogous to dynamic searching procedure. Each new image’s global 

feature is extracted, which is then used to traverse on the constructed hierarchical vocabulary tree 

for finding overlapping images in the database. 

 

Supervised backbone fine-tuning 

 

Introduction and augmentation of training dataset. In this paper, we employ the benchmark of 

BeDOI (Zhan et al. 2023) to generate training samples for our fine-tuning solution, the reasons 

are: first, diverse sources and scenarios. BeDOI contains photogrammetric images from various 

sources (close range, UAV, oblique) and scenarios (urban, countryside, village, forest), enhancing 

the generalization of the fine-tuned backbones in handling diverse photogrammetric images. 

Second, referenced overlapping relationships. BeDOI provides referenced overlapping 

relationships between images, which is crucial for our fine-tuning purpose. We utilize full 

photogrammetric information to rigorously determine overlapping image pairs. Specifically, 

commercial software is used to generate 3D mesh models and image orientations. Mesh triangles 

are reprojected onto the image space with occlusion detection, and overlapping image pairs are 

identified based on the number and area of reprojected common mesh triangles. 

 

Figure 7. Performance of BORDER_REFLECT. 

To further improve the model's generalization ability, we employ data augmentation to simulate 

diversity and noise in real-world scenarios. This strategy involves random rigid transformations 

including rotation, flipping, scaling, and brightness changes, which benefit the backbone model 



become sensitive to different perspectives and transformations. In particular, to avoid the 

degradation of the black edges and pixel loss caused by simulated rotation, the 

BORDER_REFLECT (BR) technique. This method applies mirror reflection to replicate the pixel 

information on the sides of the region of interest (RoI), effectively filling in the lost pixels as shown 

in Fig. 7. The open-sourced OpenCV package is utilized for implementing BR in this project. 

Figure 8. Backbone fine tuning using triplet images and triplet loss. 
 

Backbone Fine-tuning. The inclusion of hard negative samples (non-matching local features, 

dissimilar image pairs) enhances the performance of feature matching and object retrieval. In our 

case, these hard negatives are non-overlapping image pairs. As illustrated in Fig. 8, we input 

triplets comprising positive overlapping image pairs and negative non-overlapping image pairs 

into a shared-weight triplet backbone model. The primary goal is to refine the pre-trained weights 

to distinguish between overlapping and non-overlapping image pairs. Our fine-tuning solution 

involves the following components: 

1. Backbone encode layer. For the feasibility of triple images, a three-branch backbone 

encode with same weights is fine tuned. In this study, five popular backbones (VGG16, ResNet101, 

GoogleNet, SwinT and PvT) are used as examples to demonstrate the efficacy of the proposed 

fine-tuning solution. In addition, as Jun et al. (2019) suggests, FC (fully connected) layer typically 

yields inferior image retrieval results due to a lack of geometric invariance and spatial information. 

Therefore, we retain only the convolution layers and transformer blocks as encoders. Then, based 

on the cropped backbones, we can easily obtain activations of multi-channel feature maps. In 

general, these activations are with very high dimension, they are unsuitable and time inefficient 

for retrieval tasks. Thus, an aggregation layer is required to generate concise global features. L2 

normalization is applied to channel-wise activations before the aggregation layer. 

    2. Aggregation layer. To generate compact and effective global feature, in this work, the 

widely-used GeM pooling (Radenović et al. 2019) is embedded as aggregation layer, as shown in 

Fig. 9 and equation (2). Here 𝑥𝑖,𝑗,𝑐 is feature value from the location (i, j) of c-th feature map, H 

and W are the height and width of feature map, p denotes the power index and can be refined during 

training. The power operation with parameter p is perform on the elements of each feature, then 

channel wise averaging pooling is followed for c-th dimensional feature. Finally, another 1/p-th 

power operation is applied to generate GeM feature. After L2 normalization, we obtain the 



standardized vector as the final feature descriptor.  

                                           𝑦𝑐 =  (
1

𝐻∗𝑊
∑ ∑ (𝑥𝑖,𝑗,𝑐)

𝑝𝑊
𝑗=1

𝐻
𝑖=1 )

1

𝑝                                                          (2) 

Figure 9. GeM Pooling workflow. 

    3. Training with triplet loss. While Siamese networks (Radenovic et al. 2016) and pairwise 

loss (such as contractive loss) have been successfully used to refine backbones, triplet loss is yet 

considered in our fine-tuning solution as it has better performance on avoiding overfitting (Hou et 

al., 2023). To measure similarity between two images (𝐼𝑖, 𝐼𝑗), we first extract the global feature GF 

using the mentioned backbone encode and aggregation layers, and compute Euclidean distance 

D(𝐼𝑖, 𝐼𝑗) to estimate similarity of two images. Before training, tuples {T(𝐼𝑄, 𝐼𝑃, 𝐼𝑁)} that contain 

positive image pair (𝐼𝑄, 𝐼𝑃) and negative image pair (𝐼𝑄, 𝐼𝑁) are selected. Positive pairs are selected 

among all referenced overlapping image pairs in BeDOI, and the third non-overlapping image IN 

is randomly selected from other sub-datasets. In addition, to extend model generalization, the 

proposed augmentation methods are randomly performed on 𝐼𝑃  and 𝐼𝑁 . Finally, with a pre-set 

constant margin M, the conventional triple loss (Schroff et al. 2015) given by (3) is employed in 

our fine tuning. The goal is to fine-tune the backbone so that the distance between 𝐼𝑄 and 𝐼𝑃 is 

minimized, while the distance between 𝐼𝑄 and 𝐼𝑁 is maximized to at least margin M.  

         𝐿𝑜𝑠𝑠(𝑇(𝐼𝑄 , 𝐼𝑃, 𝐼𝑁)) = 𝑚𝑎𝑥 (𝐷(𝐺𝐹𝐼𝑄
, 𝐺𝐹𝐼𝑃

) + 𝑀 −  𝐷(𝐺𝐹𝐼𝑄
, 𝐺𝐹𝐼𝑁

), 0)                                   (3) 

 

Unsupervised indexing structure of hierarchical vocabulary tree 

 

While global features with exhaustive pairwise comparison can speed up image matching (Hou et 

al. 2023), we propose a lookup structure based on a hierarchical vocabulary tree tailored for global 

features, which can further improve the time efficiency of retrieval and the image matching. Our 

hierarchal vocabulary tree is trained based on the fine-tuned global features of images from BeDOI. 

Figure 10. Construction of Hierarchical vocabulary tree. 



Construction of hierarchical vocabulary tree. In this work, the construction of hierarchical 

vocabulary tree is very simple and illustrated by Fig. 10. First, all the training images of BeDOI 

are used, and their global features are extracted using fine-tuned backbones. These global features 

are then clustered into k sub-nodes using a canonical unsupervised classification method – K-

means1, where k is the pre-set number of sub-clusters for each node. The features within each sub-

node are recursively clustered into further sub-nodes using K-means until a pre-set layer L is 

achieved, or the sub-node contains fewer than k global features. The resulting sub-nodes are 

recorded to facilitate fast retrieval. 

 Discussion. The key motivation behind the hierarchical vocabulary tree is that overlapping 

images with similar global features should be grouped into the same sub-nodes, aiding in efficient 

feature search. However, the depth (L) and width (k) of the vocabulary tree can affect both retrieval 

accuracy and efficiency. If the size of the hierarchical vocabulary tree is too large, it typically has 

superior retrieval precision as the feature space are split more elaborately, but the storage memory 

and searching time increase, because more sub-nodes are needed to be stored and traversed. 

Conversely, for a small hierarchical vocabulary tree, the retrieval speed and memory can be 

efficient, but it may contribute to a coarse split feature space which could return ambiguous 

candidate similar images and affect retrieval precision. On the other hand, for datasets of varying 

sizes, a relevant applicable hierarchical vocabulary tree should be advocated, the ideal complexity 

for hierarchical vocabulary tree to search one query is O(Lk), which should be smaller than O(n), 

n is the number of images2. To balance retrieval speed and precision, the vocabulary tree should 

be designed to ensure time-efficient retrieval while maintaining good accuracy, which implies that 

the structure of the vocabulary tree should be with careful consideration.  

Offline & Online OIP retrieval 

Based on the fine-tuned backbone model and hierarchical vocabulary tree, a baseline method for 

determining overlapping image pairs can be easily expected with the improved image 

representation and efficient indexing solution. This section presents two retrieval applications of 

online and offline working mode, as Fig. 9 shows. The key assumption is that overlapping images 

are supposed to fall into the same nodes of hierarchical vocabulary tree, i.e., similar global features 

should be contained by the same sub-cluster. 

Offline OIP retrieval. Offline retrieval mode considers all collected images together and 

returns all the potential overlapping image pairs at one time, which is just suitable for improving 

matching speed of conventional offline SfM (Hou et al. 2023). All extracted global features are 

sent into the constructed hierarchical vocabulary tree, traversing from the top to the bottom layer. 

The nearest sub-node for each global feature is determined by comparing the Euclidean distances 

between sub-cluster centers and the corresponding global feature. Images within the same sub-

node are considered overlapping pairs. If a query image falls into a sub-node with only a few 

 
1 In this work, K-means is implemented by using the “KMeans” module from the pytorch package of sklearn. 
2 When traversing on the hierarchical vocabulary tree, each query has to be compared with Lk sub-nodes 

to determine which sub-nodes it should be clustered into. 



candidate images (e.g., fewer than 30), its sister sub-nodes (inheriting from the same parent sub-

node of the previous layer) are explored until sufficient candidate overlapping images are found. 

Figure 11. Offline and Online retrieval based on the proposed baseline method. 

 

Online OIP retrieval. Unlike the offline OIP, which processes all captured images together and 

identify the whole overlapping information, online working mode handles each newly captured 

image sequentially and dy-namically in real-time. The goal is to fast find new im-age’s candidate 

overlapping images within a database, which is the most important step for online SfM (Zhan et 

al. 2024). In this case, the database denotes a solved pho-togrammetric block containing many 

already registered images. For each new image, the extracted global feature is traversed along the 

hierarchical vocabulary tree, similar to offline mode, the database images that stay in the same 

node as new image does are considered as the resulted overlapping images. 

 

Data and Pre-trained Model Delivery  
 

The dedicated webpage on the open public git has been implemented: 

(https://github.com/WHUHaoZhan/BeDOI and https://github.com/wzwcumt/LOIP-for-SfM). 

Any interested researcher can learn more about the our BeDOI benchmark from the first link and 

our learning-based baseline method for determining overlapping image pairs from the second link. 

The data are freely available at the following link: 

https://pan.baidu.com/s/1gcS4_fk52nZIWoFtczZzow  (extraction code: 1234) and the pre-trained 

weights of pre-trained backbones and hierarchical vocabulary trees of various sizes  can be 

downloaded via https://pan.baidu.com/s/1PG_BgpMnSgAAO4gGQUPpPA (extraction code: 

jquc).  

 

Dissemination  
 

The Scientific Initiative has been largely advertised during the ISPRS Geospatial Week 2023 in 

Cairo with a dedicated presentation given by the PI Xin Wang. It is still under development and a 

scientific paper (Wang et al., 2024) that has been accepted by the PFG-Journal of Photogrammetry, 

https://github.com/WHUHaoZhan/BeDOI
https://github.com/wzwcumt/LOIP-for-SfM
https://pan.baidu.com/s/1gcS4_fk52nZIWoFtczZzow
https://pan.baidu.com/s/1PG_BgpMnSgAAO4gGQUPpPA


Remote Sensing and Geoinformation Science. This paper will give more details on the learning-

based baseline method for determining overlapping image pairs. In addition, the output of this 

project is successfully applied in the work of online SfM (Zhan et al., 2024), resulting in two 

scientific papers – one is submitted to the ISPRS Journal of Photogrammetry and Remote Sensing, 

another one is accepted by the proceedings of European Conference on Computer Vison (ECCV) 

workshop (Gan et al., 2024). 
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