Photogrammetry for Industry 4.0 – Prospects and Challenges

Thomas Luhmann

Jade University of Applied Sciences, Oldenburg, Germany
Institute for Applied Photogrammetry and Geoinformatics

Invited Paper
ISRPS Commission II, WG 7
Riva del Garda

Outline

- Introduction
- What is Industry 4.0?
- Photogrammetric solutions
- Accuracy and verification
- Summary and outlook

Historical development

Industrial photogrammetry

Large-format camera GSI CRC-1 (1986)

Large-format camera Rollei LFC (1990)

Digital image comparator GSI AutoSet-1 (1986)

image format: 230 x 230 mm² accuracy: 1µm

Digital image comparator Rollei RS-1 (1988)

and Geoinformatics

Historical development

Industrial photogrammetry

Online videogrammetry Mapvision (1987)

CCD video cameras

Indusurf Zeiss (1988)

T. Luhmann Photogrammetry for Industry 4.0 – Prospects and Challenges

1980

Historical development

Industrial photogrammetry

Programmable Optical Measurement System (POM) Leica/Rollei (1991)

Interactive multi-image CAD system PHIDIAS Phocad (1991)

2000

Historical development

Industrial photogrammetry

Still-video camera Kodak DCS 460 (1996)

Fringe projection system

GOM (2000)

Tactile stereo system VSTARS (2000)

Tactile mono system Metronor (2002)

Large-format camera Imetric (2000)

Multi-camera measurement system AICON (2006)

1980

Components

Cameras

High quality DSLR cameras

High quality (metric) cameras

High-speed cameras

2000

Metric stereo camera

Components

Scale bars and targets

Components

Software

Feature extraction

Approximate values

Subpixel measurement

Bundle adjustment Spatial intersection

Post-processing Interfaces

1980

1990

2000

2010

Markets

Industrial sectors (selection)

Automotive

Aerospace

Ship building

Robotics

Medicine

Annual growths

Industrial image processing Germany, 2005 - 2016

Definitions

Definition

Networking of all components in self-organized production:

- Human beings
- Machines and tools
- Production facilities
- Logistics
- Products

by means of digital information and communication technologies for all stages of the life cycle of a product.

Industry 4.0 = 4th industrial revolution

- 1. revolution: water and steam power
- 2. revolution: mass production with convayer belts
- 3. revolution: electronics and IT (e.g. integrated circuits)
- 4. revolution: software, internet of things, big data ...

defined afterwards

defined before

JADE HOCHSCHULE
Wilhelmshaven Oldenburg Elsfleth

Definitions

New tools (selection)

Definitions

Information processing

What is Industry 4.0? Metrology

The impact of Industry 4.0 on industrial metrology

- Individualisation of products
- Flexible manufacturing
- Combining virtual and real worlds
- Interfacing to production

Metrology is the key factor for interfacing real and virtual world

Metrology

The impact of Industry 4.0 on industrial metrology

The role of metrology changes:

- Final inspection becomes less important
- Feedback loop to production
- In-, at- and near-line installations growing fast
- MAA (Measurement Assisted Assembly)

Here photogrammetry offers:

- Scalable and flexible solutions
- Fast and precise multi-point measurements
- Contactless (ambient) measurements
- Image archives (true view)
- Dynamic and real-time output

JADE HOCHSCHULE
Wilhelmshaven Oldenburg Eisfleth

Metrology

Photogrammetric tasks

Offline:

- 3D point measurements
- 3D profiles and surfaces
- shape and size, quality control
- deformations, vibrations

Online:

- robot calibration and control
- machine control
- inline measurements (100% inspection)
- control of autonomous systems

•

Source: GOM

Metrology

Point-probing solutions

Offline photogrammetry

Online imaging with FOV projection

High speed 6DOF measurement

Measurement cabin

Multi-camera probing by intersection

Single-camera probing by resection

Metrology

Surface-probing solutions

Fringe projection

GOM ATOS Compact Scan

Digital Image Correlation (DIC)
GOM ARAMIS

Metrology

Integrated measurement systems

Source: AICON

Source: Mapvision

Metrology

Integrated measurement systems

K: cameras

S: sensors with locator L

R: robot

P: reference points

Source: GOM Source: AICON

Source: Zeiss

Metrology

3D projection and surface control

Projection of surface deformations (AICON)

Projection of object features (Fh IGP)

Check for completeness in aircraft industry (Premium AEROTEC) left: mounting ok; middle: erroneous position; right: missing part

Terminology

Resolution, precision and accuracy

Suitability of testing device or procedure for intolerance evaluation

Measurement error and measurement uncertainty

Traceability to national standards

JADE HOCHSCHULE
Wilhelmshaven Oldenburg Elsfleth

Workflow

JADE HOCHSCHULE
Wilhelmshaven Oldenburg Eisfleth

References

Reference bodies and test artefacts

Ball plate

Arrangement of reference scale bars (VDI 2634)

Free-form artefacts

Dumb-bell artefact

References

VDI/VDE 2634

length measurement deviations 0,060 0,050 0,040 0,030 0,020 0,010 0.000 1000 1500 2000 -0,010 -0,020 -0,030 -0,040 -0.050 -0,060

Assessment of length measurement error (LME)

Assessment of plane probing error

Assessment of sphere distance error

Summary and outlook

Challenges

- Flexibility
 - → object properties (shape, size, material)
- Accuracy
 - → scalable, verified, certified, accepted
- Speed
 - → process frequency
- Reliability
 - → environmental conditions, repeatability, 24/7 operation
- Robustness
 - → error detection, 'intelligent' reactions on unforeseen events
- Documentation
 - → reporting, archiving, assignment to individual object
- Analysis
 - \rightarrow comparison with nominal values (e.g. CAD), quality analysis, trend analysis
- Interfacing
 - → robots production tools databases

Summary and outlook

Prospects of Industry 4.0

- Higher flexibility in production
- Improved quality of production
- Decreased manufacturing costs
- Decreased maintenance effort

Prospects for optical metrology

- Growing markets for metrology
- Images as data source and archives
- Intelligent systems (machine learning)
- Specialised vs. universal systems
- Education
- Research topics:
 - learning systems
 - real-time surface measurement
 - semantic modelling
 - simulation
 - from CAD to measurement to analysis to production control
- Conferences and shows in optical metrology: ISPRS, 3DMC, CMSC, EPMC, O3D, Fraunhofer, Control, ...

Acknowledgements

Thank you for your attention

This presentation was kindly supported by

- Dr. Werner Bösemann (CEO AICON 3D Systems, part of Hexagon)
- Prof. Manfred Schmitt, WZL, Aachen

https://www.youtube.com/watch?v=GfDKkeq_eZU

