

A flawless 4D city modelling information chain

Where do 4D data requirements and 4D data collection possibilities meet?

Jantien Stoter Professor 3D Geoinformation Delft University of Technology Researcher @ Kadaster NL Netherlands

Relatively easy to reconstruct 3D city models

3D is used in city planning & environmental simulations

But 3D city models differ a lot, due to

differences in acquisition methods

 generated independently with different reconstruction methods, software and sensor data

differences in applications

 every application requires its own specific semantic and geometric LoD of the 3D data

Problems of differences in current 3D city models

Non-consistent

- Once collected 3D data for an appl can hardly be reused
- 3D city models often require (interactive) processing to use the data

Where do 4D data requirements and 4D data collection possibilities

Content of my presentation:

- Current 4D modelling practices:
 - what do those imply for the data acquisition process?
- Quality requirements of 3D city models
- Data requirements of 3D/4D applications

4D: 3D+time models

• Temporal requirements for acquisition:

Detect and acquire changes in reality

- Models remain consistent over time if reality does not change
 - Use of dense image matching PC instead of LiDAR should yield same heights

Well-known 5 LoDs for buildings in CityGML

But what is less known....

4D: 3D+LoD

Each LoD can have different implementations

4D modelling Quality requirements Data requirements of appl

- Simply saying "LoD2" is not sufficient

Even LoD1 models have different realisations

- Which height is used for extrusion?
 - Gutter? Maximum height? 2/3, 1/2 of roof height?
 - Application dependent
- How calculated? e.g. max height:
 - Highest point that falls in polygon? Median? Using buffer?
- Often users are not aware of possible differences

Be clear about which height reference and how obtained (preferably more than one)

More standardisation is needed

kad

Biljecki, 2016

attribute elevationReference specifies height reference

Figure 15: Examples of elevation references for different kinds of building

"The more detailed, the better" "Lod2 is more accurate than LoD1"

The effect of acquisition error and level of detail on the accuracy of spatial analyses

Filip Biljecki, G Heuvelink, H Ledoux, J Stoter, Cartography and Geographic Information Science, 45(2): 156-176, 2018.

- Accuracy of acq method more impact on quality of spatial analysis than LoD
- Higher LoDs do not always bring significant improvements
 - LoD1 versus LoD3 for shadow estimation
- 3D CMs can be too detailed

Not always strive for highest LoD, relate it to app

A lot is known about LoD of buildings

what about other types of features?

Bridges and tunnels

LoD Roads (transport) in CityGML

4D modelling Quality requirements Data requirements of appl

Beil, C. and Kolbe, T. H., 2017

- Network only for LoD0
- Lod1-4 surfaces (no relation with network)

CityGML as a data format

Complete, but verbose & complex, and therefore sometimes difficult to work with

CityJSON encoding

JavaScript Object Notation

 Easy-to-use for developers; compression 7 to 10 x compared to CityGML

CityGML 3.0

- Major revision compared to 2.0
- Support for storeys; versioning
- No LoD4; LoD0-LoD3 for indoor and outdoor
- Distinguish between Conceptual model and GML encoding

- Current 4D modelling practices:
 - what does that imply for the data acquisition process?
- Quality requirements of 3D city models
- Data requirements of 3D/4D applications

3D model is not a 1:1 model of reality

- For 3D applications, we need:
 - Data beyond the "wow" effect
 - Up-to-date
 - Not only acquisition: also maintenance
 - Consistent (4D)
 - Without errors

errors = common in 3D

4D modelling Quality requirements Data requirements of appl

Errors in 3D models

- Not visible-> users are not aware
- May give no problems in specific software or applications
- But not possible to reuse 3D data in other software and applications

Software to validate 3D data

	/al <mark>3d</mark> ity	
geometric vali	idation of GML 3D primitives	
Input GML file 😡	Select file	
30 primitives Θ	gml:Solids gml:HultiSurfaces	
Snap tolerance Θ	0.001	
Planarity tolerance Θ	0.01	
	Upload + validate	

- Validates geometries according to international standards (ISO19107 & OGC)
- Web interface: http://geovalidation.bk.tudelft.nl
- Reads CityGML

Val3dity: validation of 3D GIS primitives according to the international standards. Hugo Ledoux. Open Geospatial Data, Software and Standards 3 (1), 2018, pp. 1

Software to validate 3D data

To understand quality of existing 3D data sets

- Applied to 37 datasets in 9 countries
 - 3.6m buildings
 - 16m 3D primitives
 - 40m surfaces

~	/al3	dity	
geometric vali			orimitives
Input OML file O	Select file		
30 primitives 😡	gwl:Solids	gml:Hult(Surfaces	
Snap tolerance O	4.801		
Planarity tolerance ${f \Theta}$	0.01		
	Upload + val	idate	

Conclusion validating existing 3D city models

The most common geometric and semantic errors in CityGML datasets Filip Biljecki, Hugo Ledoux, Xin DU, Jantien Stoter, Kean Huat SOON, Victor KHOO ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W1: 13-22, 2016.

- CityGML data without errors are rare
- Most valid models are LoD1 models
- Many errors can be automatically fixed or prevented:
 - missing faces; geometries not properly snapped; orientation of surfaces; non planar faces (often caused by deviations of few cm only)

Reconstruct valid 3D models, if you want your 3D data to be (re)used

4D modelling

Quality requirements

Data requirements of appl

- Current 4D modelling practices:
 - what does that imply for the data acquisition process?
- Quality requirements of 3D city models
- Data requirements of 3D/4D applications

GeoBIM integration: to reuse data

To be realised with IFC

Industry Foundation Classes

IfcActuatorType IfcAirTerminalBoxType IfcAirTerminalType IfcAirToAirHeatRecoveryType IfcAlarmType IfcAnnotation

IfcBeam

IfcBoilerType IfcBuildingElementPart IfcBuildingElementProxv **IfcBuildingStorey** IfcCableCarrierFittingType IfcCableCarrierSegmentType IfcCableSegmentType IfcChillerType IfcCoilTvpe IfcColumnTvpe IfcCompressorTvpe IfcCondenserType IfcControllerType IfcCooledBeamType IfcCoolingTowerType IfcCoverina **IfcCurtainWall** IfcDamperType IfcDistributionChamberElementType **IfcDistributionControlElement IfcDistributionElement IfcDistributionFlowElement**

IfcDoorType

IfcDuctFittingType IfcDuctSegmentType IfcDuctSilencerType IfcElectricApplianceType IfcElectricFlowStorageDeviceType IfcElectricGeneratorType **IfcElectricHeaterType**

IfcElectricMotorType IfcElectricTimeControlTvpe **IfcElementAssembly**

IfcEnergyConversionDevice IfcEvaporativeCoolerType IfcEvaporatorType **IfcFanType IfcFastenerType** IfcFilterType IfcFireSuppressionTerminalType **IfcFlowController IfcFlowFitting** IfcFlowInstrumentType IfcFlowMeterType **IfcFlowMovingDevice IfcFlowSegment IfcFlowStorageDevice IfcFlowTerminal** IfcFlowTreatmentDevice IfcFooting **IfcFurnishingElement** IfcFurnitureType

IfcGasTerminalType

IfcHeatExchangerType **IfcHumidifierType** IfcJunctionBoxType IfcLampType IfcLightFixtureType IfcMechanicalFastenerType IfcMemberType IfcMotorConnectionType **IfcOpeningElement** IfcOutletType **IfcPile**

IfcPipeFittingType

IfcPipeSegmentType IfcPlateType IfcProtectiveDeviceTvpe IfcPumpType IfcRailing **IfcRamp** IfcReinforcingBar **IfcReinforcingMesh**

IfcRoof

IfcSanitaryTerminalType **IfcSensorType** IfcSite **lfcSlab**

IfcSpace

IfcSpaceHeaterType IfcStackTerminalType

IfcStair

IfcSwitchingDeviceType IfcSystemFurnitureElementType IfcTankType IfcTransformerTvpe IfcTransportElementType IfcTubeBundleType IfcUnitaryEquipmentType IfcValveType

IfcWall

IfcWasteTerminalType IfcWindowType

4D modelling Quality requirements Data requirements of 4D appl

^{4D modelling} Quality requirements than GML (point, curve, surface and solid)^{Data requirements of 4D appl}

Curves/wires

 p_1

 p_2

 p_3

Volumetric shapes

- IfcExtrudedAreaSolid
- IfcExtrudedAreaSolidTapered
- IfcConnectedFaceSet
- IfcCsgSolid
- IfcBlock
- IfcBooleanResult
- IfcSphere
- IfcRectangularPyramid
- IfcRightCircularCylinder
- IfcRightCircularCone
- IfcTriangulatedFaceSet
- IfcHalfSpaceSolid

IfcCircle IfcEllipse IfcLine IfcEdge IfcOrientedEdge IfcEdgeLoop IfcPolyLoop IfcPolyLoop IfcPolyline IfcCompositeCurve IfcTrimmedCurve

 $\cdot p_4$

- IfcArbitraryClosedProfileDef
 IfcArbitraryProfileDefWithVoids
- IfcRectangleProfileDef
- IfcRoundedRectangleProfileDef
- IfcRectangleHollowProfileDef
- IfcTrapeziumProfileDef
- IfcCircleProfileDef
- IfcCircleHollowProfileDef
- IfcEllipseProfileDef
- IfcFace

IfcCShapeProfileDef IfcLShapeProfileDef IfcIShapeProfileDef IfcTShapeProfileDef IfcUShapeProfileDef IfcZShapeProfileDef IfcDerivedProfileDef

Abstract shapes

IfcRepresentation IfcGeomatricSet IfcShellBasedSurfaceModel IfcManifoldSolidBrep IfcMappedItem IfcFaceBasedSurfaceModel

S Donkers, H Ledoux, J Zhao, J Stoter: Automatic conversion of IFC datasets to geometrically and semantically correct CityGML LOD3 buildings. Trans. GIS 20(4): (2016)

Conversion IFC-> CityGML

- Works on "academic" and "clean" IFC models:
 - Modelled as expected
 - Without errors
- In practice, conversion of real models is difficult, in practice:
 - IFC files are not "standard" and vary a lot in their structure and classes used
 - IFC models contain errors, because support of main softwares is missing

35

OGC[®] Making location count.

Main conclusion:

Future City Pilot-1: Using IFC/CityGML in Urban Planning Engineering Report

Publication Date: 2016-10-03
Approval Date: 2017-08-17
Posted Date: 2017-06-27
Reference number of this document: OGC 16-097
Reference URL for this document: http://www.opengis.net/doc/PER/FCP1-UPrules
Category: Public Engineering Report
Editor: Mohsen Kalantari
Title: Future City Pilot 1: Using IFC/CityGML in Urban Planning Engineering Report
OGC Engineering Report
COPYRIGHT
Copyright © 2017 Open Geospatial Consortium. To obtain additional rights of use, visit http://www.opengeospatial.org/

"integration was not possible due to inconsistent coding of IFC elements that made transformation to CityGML complicated"

-> "a clear set of specification needs to be set for the preparation of IFC files" We're making <u>specific</u> recommendations for geo-ready IFC data

Instead of throwing data over the fence, enable downstream use of the data

- 1. How to construct valid volumetric objects
- 2. How to avoid self-intersections
- 3. Where IfcSpaces should be used
- 4. Which Ifc classes should be used
- 5. How to correctly georeference

EuroSDR GeoBIM project

4D modelling Quality requirements Data requirements of 4D appl

- Lantmateriet Sweden
- GUGiK Poland
- NLS, Finland
- Kartverket, Norway
- ADSE, Denmark
- Kadaster, NL
- Swisstopo, Switzerland
- Ordnance Survey, UK
- Ordnance Survey, Ireland
- IGN, France
- ICGC, Catalonia

Use case 1: From design to construction

3D geoinformation

Applications

Few words about other applications

4D modelling Quality requirements **3D data for Simulation - CFD** Data requirements of 4D appl

- Computer fluid dynamics modelling (wind, air quality, temperature)
- Application specific requirement of CFD modelling:
 - LoD1 model (max height)
 - should be 100% closed

3D data for noise simulations Data requirements of 4D appl

4D modelling

European Environmental Noise Directive

- Most remarkable 3D data requirements:
 - block models are sufficient (max height)
 - block models should model varying heights; even for one footprint
 - height differences with as few height lines as possible (no isolines)

Conclusions: bridging the gap between 4D acquisition and 4D applications

- Enables reuse of once captured 3D data models in other applications and software
- Solves current inconsistencies of 3D CM
- Recommendations:
 - Be precise in defining 3D data specifications:
 "LoD2" is not enough
 - Highest LoD is not always best
 - Different apps need different LoDs (not only buildings)
 - Important to create valid 3D city models

Open source software

github.com/tudelft3d

Pinned repositories

For more information, visit 3D.bk.tudelft.nl

Acknowledgements:

Thanks to my colleagues of 3D Geoinformation research group @ Delft University of Technology and the 3D team of Kadaster

