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ABSTRACT:

The formation of the current Rhine-Meuse delta mainly took place during the last 12 000 years. Consecutive avulsions, i.e. sudden
changes in the course of river channels, resulted in a complicated pattern of sandy channel deposits, surrounded by peatand clay.
Knowledge of this pattern is not only interesting from a geohistorical viewpoint, but is also essential when planning and maintaining
constructions like roads and dikes. Traditionally, channel deposits are traced using labor intensive soil drilling. Channel deposits are
however also recognizable in the polder landscape by small local elevation changes due to differential compaction. Thepurpose of this
research is to automatically map channel deposits based on astructural analysis of high resolution laser altimetry data. After removing
infrastructural elements from the laser data, local feature vectors are built, consisting of the attributes slope, curvature and relative
elevation. Using a maximum likelihood classifier, 75 million gridded laser points are divided into two classes: buried channel deposits
and other. Results are validated against two data sets, an existing paleographic map and a set of shallow drilling measurements.
Validation shows that our method of channel deposit detection is hampered by signal distortion due to human intervention in the
traditional polder landscape. Still it is shown that relative young deposits (4 620 to 1 700 years Before Present) can be extracted from
the laser altimetry data.

1. INTRODUCTION

During the Holocene (approximately 12 000 years - present),
much of the western and central part of the Netherlands was ag-
grading, as active river systems (Rhine and Meuse) transported
sediments from the hinterland to the coastline. In combination
with sea level rise this resulted in a Holocene sediment sequence
of up to 20 meter thickness. As river channels consist predomi-
nantly of sand while the adjacent floodplains were dominatedby
clay deposition and peat formation, a strong grain-size partition-
ing occurred. Furthermore, frequent shifts in channel location
due to avulsions, resulted in a complex subsurface of clay/peat
dominated floodplain deposits laterally and vertically alternating
with sand-rich channel areas, (Allen, 1965).

Currently, buried channel deposits are recognizable in theland-
scape, basically due to a process called topographic inversion.
This occurs when floodplain deposits on the sides of the buried
channels compact at a higher rate than the channel sand itself.
At the surface this results in an area with a higher elevationat
the locations of buried channel deposits. Note that the sandre-
maining from an abandoned channel may not start directly at the
surface: channels abandoned relatively long ago may meanwhile
have been deeply covered by floodplain deposits. The maximum
height differences between the buried channels and the surround-
ings are in the order of a meter for relative large and young chan-
nel deposits. To some extent it holds that the thinner and older,
that is, deeper the channel deposits, the smaller also the height
difference.

Knowledge of the location of these channel deposits is essen-
tial when planning and maintaining large construction works as
motorways and dikes, (Munstermann et al., 2008). Abrupt and
unidentified changes in the subsurface may lead to unexpected
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differences in compaction, which may lead again to damaged or
uneven road surfaces or even to failing dikes.

Traditionally, mapping of the shallow subsurface of the Rhine-
Meuse delta is based on soil drillings. A large effort has been
made by Dutch Utrecht University: Based on more than 25 years
of field research using over 200 000 manual boreholes a paleo-
geographic map is composed, (Berendsen and Stouthamer, 2001),
see also Fig. 1, right. As the drillings require a large amount of
manual labor in the field, not the whole Rhine-Meuse delta has
been covered in the same amount of detail. Also necessarily some
interpretation and interpolation steps were involved in composing
the map, which may have introduced local anomalies.

LIDAR data is being used more and more to reveal and highlight
morphological and archaeological structures that are hardly vis-
ible. In archaeology, LIDAR data has revealed burial mounts,
(Kakiuchi and Chikatsu, 2008), Celtic field systems, (Kooistra
and Maas, 2008, Humme et al., 2006), and other earthwork fea-
tures, (M. Doneus and Jammer, 2008). Spatial scales characteris-
tic for a certain landscape type, like small scale roughness, could
be identified by a spectral analysis of airborne laser scanning data,
(Perron et al., 2008). Previous studies, (Berendsen and Volleberg,
2007, Munstermann et al., 2008), showed that also buried chan-
nel deposits can be visualized using airborne laser data from the
AHN (Actueel Hoogtebestand Nederland) archive.

In this research it is considered if it is possible to systematically
map channel deposits from second generation, high resolution
AHN-2 data. In 2012 for every 50 cm grid point in The Nether-
lands a height value will be available with a precision of about 5
cm, (AHN, 2000). As a test area the so-called Alblasserwaardis
used, a polder of 350 km2, directly east of Rotterdam. The lo-
cation of this polder is indicated in the inset in Fig. 5. For this
polder, a test data set has been kindly made available by provider
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Figure 1: Alblasserwaard.Left: Laser altimetry data.Right: Paleogeographic map

Fugro Aerial Mapping B.V. and owner Waterboard Rivierenland,
consisting of about 1.2 billion gridded points, see Fig. 1, left.

From this data set points representing hard infrastructureare re-
moved in a filter procedure incorporating the Dutch topographic
base map GBKN. Remaining points are classified according to
four structural attributes into two classes, channel deposit and non
channel deposit. In Section 2. this data filtering and classification
procedure is discussed. Results are validated in Section 3.against
the digital paleogeographic map and against an interpretation of
drillings from the Dutch geological database DINOLoket.

2. LIDAR DATA FILTERING AND CLASSIFICATION

In this section methodology is described aiming at the classifi-
cation of airborne laser altimetry points into two classes,buried
channel and non-buried channel deposits. A main challenge in
this research is the huge amount of input points. As the inputdata
strongly influences the methodology, these are described first.
Then it is described how laser points representing hard infras-
tructure are removed before describing the actual classification
method.

2.1 Data description

For this research FLI-MAP400 VS laser altimetry data is used,
measured by Fugro Aerial Mapping BV for the Waterboard Riv-
ierenland. An overview of the entire data set is shown in Fig.1,
left. The data was acquired during three days in August 2007,
with a minimum point density of 8 points per m2. The absolute
accuracy of a single point is reported to be 3 cm. From this raw
data, Fugro derived a Digital Surface Model (DSM) by removing
non-terrain points. The DSM points were consecutively resam-
pled to a 0.5m grid using inverse squared distance weightingand
organized in tiles of 1.25× 1 km. In total the Alblasserwaard
data set was divided into 273 of such tiles To decrease compu-
tational efforts, the .5m grid was further downsampled to a 2m
grid. As a result, the input data set for this research consists of
roughly 75 million points.

2.2 Removing non-field objects

In the gridded FLI-MAP data still objects like roads, trenches,
buildings and water surfaces are present. If unaddressed these
objects complicate the detection of buried channel deposits. The
laser data is filtered in two steps with the purpose of only keeping
data representing fields. In the first step, non-field objectsare re-
moved using a mask constructed from GBKN data, in the second
step remaining unwanted objects are removed, based on a local
variability analysis.

GBKN mask. The ‘Grootschalige Basiskaart van Nederland‘
(GBKN) is the Large Scale Standard Map of The Netherlands and
is the most detailed and accurate digital topographical database
available in the Netherlands, (GBKN, 2009). It is scale-free,
but is comparable to paper maps with a scale between 1:100 and
1:5,000. The precision of a point in comparison to another point
in the surrounding is better than 28 cm in suburban areas and
better than 56 cm in rural areas. The GBKN has a spaghetti-
structure: it only contains classified nodes and edges, for in-
stance road sides, water edges and building contours. Therefore
the GBKN map of the Alblasserwaard has to be converted to an
area map, consisting of classified segments, see Fig. 2, leftand
middle. This area map will then be applied as a mask to remove
those laser points that are in a polygonal segment from an un-
wanted class, like ‘road‘.

To create segments, the GBKN lines have to be automatically
connected and converted into classified segments. However,there
are errors in the database: lines sometimes do not connect exactly
or lines intersect without a node. Such situations have to beiden-
tified and adapted. Lines in the GBKN that do not exactly connect
are attached to the nearest line or node within a certain distance
threshold in a snapping procedure. Here a threshold of 10 cm
is used. Self intersections without nodes are removed by adding
nodes to the intersection points. Around the resulting areamask,
an additional buffer of 3m is added to further limit the influence
of unwanted objects: for example, ground close to a road is of-
ten disturbed, and cannot be considered as representative for the
situation in a field.

Despite this filtering method, unwanted features still remain in
the LIDAR data, see Fig. 2, right, like small trenches and other
objects not (yet) registered in the GBKN database. To further
decrease the influence of unwanted features, isolated points and
points with a high local variance were additionally removed.

2.3 Channel classification

The points remaining after the removal of non-field objects are
classified into two classes by means of structural classification.
For this purpose first structural attributes are determinedat each
grid point. As a result at each grid point a multi variate feature
vector is created that can be used as input for a standard remote
sensing classification method.

Slope and curvature attributes At each remaining LIDAR point,
the four following attributes are determined: slope, curvature,
TPI and smoothed TPI. Slope is chosen as an attribute because
at both sides of a buried channel, the elevation is increasing with
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Figure 2: GBKN maskLeft: Original GBKN line data;Middle: Final GBKN mask.Right: GBKN mask overlaid on LIDAR data.

respect to the surrounding field. To derive slope, a plane is fitted
by least squares to a suited squared neighborhood of a LIDAR
point. From the planar parameters, an estimation of the local
slope is derived using Horn’s method, (Burrough and McDon-
nell, 1998). Curvature is chosen as an attribute because theterrain
at an elevation caused by a buried channel is convex as it is lo-
cally protruding. Flat terrain has a mean curvature of zero,while
convex terrain has positive mean curvature. Here an approxima-
tion of mean curvature is derived from local partial derivatives
by locally fitting a second degree polynomial surface to a suited
squared neighborhood, see for more details (Besl and Jane, 1986)
and (Nahib, 1990).

To reduce the computational costs of the least squares adjust-
ment involved in the many slope and curvature determinations,
a down-sampling strategy is applied. After an analysis of differ-
ent down-sampling rates, in which slope values obtained from a
down-sampled data set where compared to slope values from the
full 2m grid input data set, it was decided to use only 10 % of the
data.

TPI and smoothed TPI attributes The Topographic Position
Index (TPI) is a measure of the elevation of a location compared
to the surrounding landscape, (Weiss, 2001). To compute the
TPI-value of a single pixel the difference between its elevation
and the average elevation of a neighborhood around that cellis
calculated. Most frequently an annular neighborhood is used,
that is, all cells between a certain minimal and maximal distance
are used in the calculation. A positive TPI-value means thatthe
cell is higher than its surroundings (at the specified neighborhood
size) while negative values mean it is lower. A TPI-value of zero
indicates that the cell either lies on a flat area or on a constant
slope. The TPI is of course strongly dependent on the scale. Here
TPI-values are computed using a minimal distance of 80 m and
a maximal distance of 100 m. From the TPI-values also a fourth
attribute is determined, the smoothed TPI. This is just the mean
of the TPI values in a 49× 49 grid points window and helps to
distinguish between small and large scale topographic features.

Maximum likelihood classification As a result of the struc-
tural attribute determination, at each grid point a 4D attribute
vector is given, consisting of slope, mean curvature, TPI and
smoothed TPI attribute values. The availability of these attribute
vectors allows us to apply standard classification techniques from
remote sensing. Here Maximum Likelihood classification is ap-
plied.

The Maximum Likelihood Classifier, (Gao, 2008), uses statis-
tics from class signatures to determine if a given pixel belongs
to a class. Each class signature is derived by manually selecting
small areas that are known to belong to a certain class. These
areas are called training samples. The training samples in this re-
search have been selected based on manual interpretation ofthe

height data and by looking at independent reference data, inthis
case the digital paleogeographic map, compare Fig. 1, right. In
Fig. 3 the location of the training samples is shown. The results
of the classification were slightly cleaned using the morphologi-
cal operators ‘majority filter‘ and ‘conditional dilation‘to remove
small outlying classification results and fill small holes, e.g. (Jain,
1989).

3. RESULTS, VALIDATION AND DISCUSSION

In this section the results of the automatic classification of the Al-
blasserwaard LIDAR data are presented, validated and discussed.
First visual results are discussed. Then two validation methods
based on soil drillings are described, together with the results of
the actual validations.

3.1 Visual validation

The blue points in Fig. 5 indicate LIDAR 2m grid points clas-
sified as ‘buried channel‘. Clearly some more or less connected
channel structures in East-West direction are recognizable. Si-
multaneously, many thicker fragments classified as ‘buriedchan-
nel‘ are visible. Based on a visual evaluation it is not directly
obvious if these thicker fragments indeed correspond to channel
deposits. Also anomalies are visible in the classification results:
thin, straight lines appear at many locations and are mainlycor-
responding to terrain close to roads and ditches.

Fig. 8 shows a zoom-in of the classification results, again inblue,
superimposed on areal imagery data. The area in Fig. 8 approx-
imately corresponds to the red rectangle in Fig. 5. This image

Figure 3: Training samples used for the classification process.
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confirms that the classification is still influenced by infrastruc-
ture: The classification algorithm reports buried channelsnear
and at farmyards and along a small ditch which indicates thatthe
GBKN infrastructure database is not complete and that the filter-
ing procedure should be further improved.

3.2 Drilling data description

For this research two independent validation data sets based on
soil drillings are available. The first is a map product, the second
set consist of a large amount of single drillings, interpreted by the
authors.

Digital paleogeographic map A digital paleogeographic map
of the complete Rhine-Meuse delta during the Holocene (includ-
ing the locations of buried channel deposits) is described in (Be-
rendsen and Stouthamer, 2001). The Alblasserwaard sectionof
this map, Fig. 1, right, is used as validation in this research. The
map is based on more than 25 years of field research using over
200 000 manual boreholes, 45 000 archaeological findings and
1 200 radiocarbon datings. The map is stored in vector format,
each individual area consists of a polygon. For each area up to 12
different attributes are stored like channel size, channellength,
age, year of beginning, year of ending, etc. The age of the chan-
nels on the map are given in years Before Present, where Present
is defined as the year 1950. For this research four main age cat-
egories are distinguished, indicated by different colors in Fig. 1.
These periods have been manually chosen based on the distribu-
tion and amount of channels abandoned in these periods.

Figure 4: Classified DINO drillings.

DINO drillings The DINO database contains data and infor-
mation of the subsurface of The Netherlands, (DINOLoket, 2000).
The archive contains among others shallow boring measurements
that are suitable to use as reference data for this research.They
cover primarily the shallow subsurface and contain standardized
information about the type of sediments and their depth. In total
2 680 individual drillings were available for the Alblasserwaard.
The eastern part has a high drilling density, in the western part
only a very limited number of drillings is available.

After importing the DINO data, each drilling was automatically
analyzed to determine if the drilling was part of a buried channel
deposit. This was done by applying a basic filter: search for sand
layers that are cumulatively more than 3 meters in thicknessin
the shallow subsurface between 3 and 12 meters. If more than
3 meters of sand was found, the drilling was classified as buried
channel deposits. In all other cases the drilling was classified as
non channel. The reason to discard the top 3 meter is that sand

layers can be present there due to other reasons, like construction
works. The analysis of all of the drillings in the eastern part is
shown in Fig. 4. This form of automatic interpretation of drilling
data is prone to errors. This means that in this case the amount of
correctly interpreted drillings is largely unknown. Stillin Fig. 4
the spatial correlation between drillings and LIDAR classification
results is visible.

3.3 Validation results

Further visual validation is obtained by comparing the automati-
cally classified LIDAR points to the digital paleogeographic map
and to the classified DINO drillings. For this project this was
done using the ESRI Flex viewer, (ESRI, 2009). This program
allows internet users to simultaneously view within their normal
browser the different spatial layers on available background im-
agery, just as within a GIS environment. A screen shot is shown
in Fig. 8. According to the digital paleogeographic map thisfig-
ure contains buried channel deposits from three periods, com-
pare Fig. 1, right. In red some relative old (6270-4621 yBP) and
wide buried channels are visible, in orange another wide, slightly
younger (4620-3701 yBP) channel is given. while some relatively
young (3700-1700 yBP) smaller channel deposits are shown in
yellow. The LIDAR data classified as channel deposit (in blue)
gives the best match with the orange channel, while some match-
ing results on the yellow channels are found as well. There seems
to be hardly no correlation between the blue LIDAR channel de-
posits, and the large and old red channels. Similarly the classi-
fied DINO drillings give good agreement over the orange chan-
nel, while the DINO drillings give mixed responses over the red
channel. Many DINO drillings outside the areas classified bythe
two other methods as buried channel are indeed red, but also here
exceptions exist.

Table 6: Classified LIDAR vs. paleogeographic map
Map with all channels

LIDAR channel 3.5 % 6.3 %
non-channel 23.5 % 66.7 %

Map 4620-1700 yBP
LIDAR channel 2.0 % 7.6 %

non-channel 5.4 % 84.9 %
channel non-channel

These observations are partly confirmed by the numeric compari-
son over the region of Alblasserwaard as a whole. In Table 6, two
confusion matrices of the LIDAR buried channel classification
compared to the paleogeographic map are given. The top matrix
compares the LIDAR classification to all buried channels shown
in Fig. 1, right; in the bottom matrix the comparison is restricted
to those channels in the paleogeographic map that are dated be-
tween 4620 and 1700 yBP, i.e. the yellow and orange channels in
Fig. 1, right. The diagonals give the percentages of pixels where
map and classified LIDAR agree, the upper right entry is the per-
centage of pixels that are non-channel in the reference map,but
are classified as channel. The reverse holds for the bottom left en-
try. Although the overall classification accuracy, i.e. thetrace of
the confusion matrix, equals 70 %, kappa, a measure of similarity
without chance agreement, only equalsκ = 0.06. By removing
the youngest and oldest channel class from the comparison, the
amount of agreement improves to 87 % with an associated kappa
value ofκ = 0.21.

There are several possible reasons for this lack of agreement.
First of all it should be noted that a condition for a high degree
of agreement is that a buried channel deposit always resultsin a
locally higher elevation. Although there is strong evidence that
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Figure 5: Buried channel classification results. The red rectangle approximately corresponds to the area of Fig. 8. The inset shows the
location of the Alblasserwaard in The Netherlands.

this condition in general is fulfilled, it is not yet sufficiently clear,
what buried channel characteristics result in what amount of local
elevation setup. Other reasons originate in the processingof the
available information. In the composition of the paleogeographic
map, errors are associated to the interpretation and interpolation
of the used drillings. The reason that the youngest, green, chan-
nels in the Paleogeographic map do not give a good comparison
with the classified LIDAR data is simply that these channels ei-
ther still exist at approximately the same location or that buildings
and roads are present along or on the remains. In both cases the
LIDAR data for these regions is simply filtered out in the data
processing procedure.

Table 7: Classified DINO drillings vs. Classified LIDAR and pa-
leogeographic map.

DINO drillings
LIDAR channel 6.3 % 7.3 %

non-channel 26.8 % 59.6 %
Map channel 15.0 % 18.6 %
non-channel 18.1 % 48.2 %

channel non-channel

In Table 7 also the confusion matrices between the classified
DINO drillings and the classified LIDAR results, top, and the
paleogeographic map, bottom, are given. Both the LIDAR result
and the map have a comparable percentage of agreement (traceof
both matrices) with the classified DINO drillings. They do how-
ever differ in the type of misclassification: in the LIDAR clas-
sification a relative large percentage of points were classified as
non-channel that were channels according to our automatic in-
terpretation of the DINO drillings. Again this could be caused
by currently present infrastructure: many DINO drillings were

obtained in the green zones, i.e. regions marked as young, chan-
nel deposits in the paleogeographic map, Fig. 1, right, where no
reliable LIDAR surface height data is available.

4. CONCLUSIONS AND RECOMMENDATIONS

In this work, an original approach for the detection of buried
channel deposits from high resolution LIDAR data has been de-
scribed and validated. The first results indicate that to some ex-
tend it is possible to automatically determine the locationof sand-
rich channel areas: relatively young (4620-1700 yBP) and wide
(∼ 100m) channel deposits are often detected by the described
method based on classification of a feature vector consisting of
structural attributes derived from LIDAR data. Current results
are however still far from a form where they could be applied in
for example road construction. The results of this large case study
also demonstrate that there are many assumptions/steps involved
in both deriving the initial classification results and in validating
these results. In future work, the impact of these assumptions on
the final results should be further investigated.

Comparison to the paleogeographic map indicates that the depth,
age and probably also size of the channel deposits are parameters
whose influence on the relative elevation should be further in-
vestigated. The digital paleogeographic map is derived based on
an interpretation of actual soil drillings and an interpolation step
to connect identified channel locations to a braided networkof
channels. This last step has not been implemented yet for ourau-
tomatic buried channel classification. To improve computational
feasibility, the original LIDAR data has been downsampled in
this study. To improve classification results it is recommended to
start by analyzing a small area at full resolution in order to, first,
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Figure 8: Buried channel classification results.Blue: Automatic classification LIDAR data;Red, orange, yellow: classification
according to digital paleogeographic map, compare Fig. 1;Red dots: DINO drillings classified as non-channel;Green dots: DINO
drillings classified as channels.

obtain better insight in what (channel deposit) signals areexactly
present in the data and, second, to adapt the classification strategy
accordingly.
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